AN EFFICIENT BLOCK NEWTON-TYPE ALGORITHM

Kostas Berberidis and Sergios Theodoridis

Computer Technology Institute (C.T.I.)
P.O. Box 1122
26110 Patras
GREECE
E-mail: berberid@cti.gr

ABSTRACT

The algorithm presented in this paper is an exact block
processing counterpart of the recently introduced Fast
Newton Transversal Filtering (FNTF) algorithm [4].
The main trait of the new algorithm is that the block
processing is done in such a way so that the resulting es-
timates are mathematically equivalent with the respec-
tive estimates of the FNTF algorithm. The required
by the algorithm blocks can be much smaller than the
filter length thus depending on the application the in-
troduced processing delay can be negligible. In cases
where the involved filter is of medium to long order the
new algorithm offers a substantial saving in computa-
tional complexity without sacrificing performance.

1. INTRODUCTION

It is well-known that, among the various issues, con-
cerning the performance of an adaptive filtering algo-
rithm, computational complexity is of paramount im-
portance for real time applications. The task becomes
a critical issue in those applications where long filters
with a few hundreds or even thousands of taps are
involved. Acoustic echo cancellation is a typical ap-
plication of the kind. Most of the existing recursive
schemes (including the Fast Recursive Least Squares
schemes [1, Ch. 5] and even the Least Mean Square
algorithm in some cases) are disqualified from being
used in such applications, with todays technology DSP
processors. One line followed to tackle the complex-
ity difficulties was via block adaptive schemes imple-
mented either in the frequency or in the time domain
[2], [3]. The step by step counterpart of most of the
existing block algorithms is the Least Mean Squares
(LMS) algorithm. Recently a significant effort is direct-
ed towards developing step-by-step adaptive algorithms
whose performance ranges between LMS and Recursive
Least Squares (RLS) algorithm, with a corresponding
trade-off in complexity [1, Ch. 5]. The FNTF algorithm
[4], belongs to this category of algorithms. Specifically,
this algorithm exploits the fact that in many cases in
practice almost all the predictable information about
the input time series can be extracted with predictors

Sergios Theodoridis is also with the Dept. of Computer Eng.
and Informatics, University of Patras, Patras 26500, GREECE.

1133

whose order can be much lower than that of the corre-
sponding filter. Thus the FNTF algorithm starts from
a low order prediction problem of order p and extrapo-
lates the gain vector (equivalently the autocorrelation
matrix) from this low order problem up to the filtering
order using a saddle point (min-max) approach. The
complexity of the FN'TF is 2m + 5p, if the FAEST al-
gorithm [1] is used in the prediction part.

When the filter is long (m > 256) the Ogm) part
of the complexity of FNTF disqualifies the algorithm
from being implemented in practice. This paper intro-
duces a novel way to overcome this drawback by using
block processing and computing the estimates once ev-
ery L samples. This is done in such a way so that the
resulting estimates are mathematically equivalent with
the respective estimates of the FNTF algorithm. That
is, the filter (computed every L time steps) as well as
the filtering errors (computed for every time instant
within the blocks) are exactly equal to those obtained
by the step by step FNTF algorithm. Thus the de-
rived algorithm is a Block Exact FNTF (BEFNTF).
The involved computations are performed using fast
convolutional schemes and the resulting saving in com-
putational complexity is substantial (in the case of long
filters is more than 80%). Note also that the size of the
block L can be small compared to the filter length thus
the processing delay is negligible.

The paper is organized as follows. In Section II
the BEFNTF algorithm is developed. Computational
issues concerning the new algorithm are discussed in
Section III, where also simulation results verifying the
performance of BEFNTF are presented.

2. DERIVATION OF THE ALGORITHM

Problem Formulation

A typical system identification problem is to represent
the unknown system by a linear filter model based on-
ly on input-output observations. Let us denote as {z}
and {2z} the input and desired output sequences re-
spectively. Then the taps ci,...,cm of the linear fil-
ter ¢,, are computed so that its output z(n) given by
Z(n) = — Y_ir, ciz(n — i+ 1) tracks in an optimal way
the output z(n) of the unknown system. In the RLS
type of algorithms (a-posteriory error formulation) the

0-7803-2431-5/95 $4.00 © 1995 IEEE

filter ¢y, is updated as follows
em(n) = em(n — 1) + wm(n)em(n) (1)

where wpy(n) and €n(n) are the gain vector and the
a-posteriori filtering error respectively, defined as

wm(n) = =AT'RZH(n — 1)zm(n) (2)

em(n) = 2(n) + Tp (n)em(n) 3)

where 2,,(n) = [z(n), ... z(n—m+1)]* is the current
input vector and matrix R,(n) is the sample input
autocorrelation matrix. In the FNTF case this matrix
is computed by properly extrapolating the pth order
sample autocorrelation matrix R,(n) of the input [4].
Note that in this case R,!(n) turns out to be a banded
matrix of width p. Writing recursion (1) in L successive
time instants and combining the resulting equations we
can express ¢, (n) in terms of ¢, (n — L) as follows

em(n) = em(n— L) + Gmxr(n)eL(n) (4)

where Gpxr(n) = [wn(n — L + 1),...,wn(n)] and
er(n) = [em(n — L+ 1),...,em(n)]*. The filter taps
vector will be updated L steps ahead. To this end the
block updating term Gy, x £ (n)er(n) must first be com-
puted. This requires a fast computation of the exact
filtering error vector €, Sn) and a proper transformation
of matrix Gmxz(n) (called henceforth gain matrix) so
that the involved matrix by vector multiplication in the
block updating term to be performed efficiently.

Computation of the fillering error vector
We first define the following error variable

em,k(n) = 2(n) + T (n)em(n — k) (5)

which is the a-priori filtering error at time n using the
filter estimated at time n—k, i.e. ¢p(n—k). In a similar
way we define as e, ;(n) = z},(n—1)wm(n—k) the a-
priori error associated with the gain vector wy,(n —k).
Using the above definitions and Eq. (1) we get

emik-1(n) = emi(n) + en(n —k+ 1)6’;’;,1:(" +1) (6)

This is a recursive lattice-type formula going backwards
with respect to k. For k¥ = 1 it yields the a-priori filter-
ing error at time n. Using the step-up and step-down
recursions of FNTF [4] the respective recursive rela-
tion for error e ,(n) can be obtained. This recursion

is given in Part '3.2 of Table I. The involved a-priori
errors e’{.k(n) and eg.k (n) are associated with the for-

ward and backward predictors respectively. Note that
these predictors are of order p while the filter is of order
m. Recursive lattice-type relations for these prediction
error variables can be similarly obtained using the up-
date recursions of the respective predictors [1, Ch. 5].
In Parts 2.2 and 3.2 the lattice scheme for the predic-
tion errors and the corresponding scheme for the filter-
ing errors are summarized. The initialization phases of
these schemes (Parts 2.1 and 3.1) can be formulated as

FIR filtering problems and can be performed efficient-
ly using fast convolution techniques. Note also that
the filtering errors computed in Part 3.2 are in fact the
a-priori errors. The corresponding a-posteriori filter-
ing errors, i.e. the entries of the required error vector
€r(n), are in turn computed in Part 3.3 of Table L.

Computation of the Block Updating Term

Direct multiplication of the mx L gain matrix Gux{N)
by the L x 1 filtering error vector €£(N) in Eq. (4) de-

mands mL multiplications per block in order to perform

the update recursion. Thus an efficient alternative is re-

quired. Let us first define the auxiliary vectors s,41(n)

and u,+1(n) (see Part 1.1 of TableI for their definitions).
These two vectors involve the forward and backward

prediction quantities respectively and they are comput-

ed at every time step. Then by combining the step-up

and step-down recursions of FNTF we obtain the fol-

lowing expression for the gain vector

wn® = (wpi(a-1)) -
(A) * (S) (7)

where n? = n—m+p and ¥~ is the (M —i) x 1 vector
consisting of the first M —i elements of the M x 1 vector
zpr. Now the above recursion will be used repeateadly
in order to express all the gain vectors involved in gain
matrix Gpxr(N) in terms of the gain vector wy, (N —
L +1). Thus after some algebra we get

GmxL(N) = WixL(N) = Smxz(N) + Unxc(N) (8)

where the k — th column of matrix Wy,xr(N) is

Or-1
w1 (N — [+1)
Also the k — th columns of matrices Spmxr(N) and

Umx(N) are given by 8, (N—L+k) and it (N—L+k)
respectively, defined as

k-2 0;
s,,.(N-L+k)=Z< sps1(N = L+ k — i))+0,,,

i=0 m-p—1-i
k-2 0 +i
~ - E . m—p+i

=0
for £k = 1,2,...,L. To compute the block updating
term each one of the right hand side terms of Eq. (8)
must be multiplied by vector ez (N), which has been
computed as in the previous subsection. The first ma-
trix by vector multiplication, due to the structure of
Wmxr(N), can be performed using fast convolution-
al schemes. The other two matrix by vector products
are computed directly. Note however that matrices
Smxr(N)eL(N) and Unx(N)eL(N) consist mainly of
zero elements while their nonzero parts cover only an
O(pL) area (recall that in practice it is p < L << m).

1134

The computation of matrices Sy (N) and Ume(N)
by using the above definitions for their columns requires
a large amount of additions. This complexity can be
reduced by an order of magnitude by using the recur-
sions given in Part 4.1 of Table I. Using these relations
only O(pL) additions per block (i.e. O(p) additions per
iteration) are required.

3. COMPLEXITY - SIMULATIONS

The main computational burden stems from the con-
volutions involved in Parts 2.1, 3.1 and 4.2.1 of the
BEFNTF algorithm. Two distinct techniques for com-
puting these convolutions can be followed. One per-
formes the respective computations via time domain
FIR filtering arguments and the other via FFT based
operations. The relative computational efficiency of
the two approaches depends on the specific values of
the parameters involved in the problem, i.e. m, L and
p- In this paper, due to the limited space we present
only the former approach. The latter approach as well
as more details on the derivation of the algorithm are
presented in [6]. The time domain technique adopt-
ed for computing the convolutions is the one suggested
in [5]. The main advantage of this approach is that
it retains the basic FIR filtering structure {(multiply-
'E;c]cumulate) which lends itself for DSP implementation
5].

Next we summarize the required number of multi-
plications per time instant for each part of the algo-
rithm.

Part 1.1: This part is executed at each time instant.
If the Stabilized FAEST as given in [1, Ch. 5] is used
(only the prediction part) then M;; = 6p mults per
time instant are needed.

Part 2.1: For the three convolutions involved in this
part the required number of mults per time instant is
My =3 (%)q, where 29 = p.

Part 2.2: The approximate complexity of the recursive

scheme of this part is M> o = 2L + 4p + 3{—2- mults per
time instant.

Part 3.1: The complexity for the two convolutions in
this part is approximately M3, = 2 (%)I 7 mults per
time instant, where 2/ = L.

Part 3.2: The recursive scheme here has an approxi-
mate complexity equal to M3, = %L mults per time
instant.

Part 4.2.1: For the convolution of this part My, =
(%)' mults per time instant are needed.

Part 4.2.2: Performing directly the involved matrix
by vector multiplication the respective complexity is
Myso=p+ % mults per time instant.

Part 4.2.3: The matrix by vector multiplication in this
part requires My 5 3 = p mults per time instant.

The total complexity of BEFNTF in multiplications
per iteration (time instant) equals

3\'/ m 3\? 2p?
Mios = — — hd =
ot 12p+3L+<2) (2L+1)+3<2> +F

The longer the filter length the more the saving in com-
putations offered by BEFNTF as compared to FNTF.
For long filters (m > 1024) the complexity of BEFNTF
is almost the 1/5 of that of FNTF. Note that in such a
case its complexity is comparable to that of Fast Exact
LMS [3] offering at the same time a performance very
close to that of RLS.

Stmulation Results
To show the performance of the algorithm the results of
a typical system identification experiment are given in
Fig. 1. A typical impulse response (truncated to 2048)
of the acoustic echo path of a room was used as the un-
known FIR system. The input time series was an AR
stationary process of order 20 (corresponding to the
greek vowel “€”). A white gaussian noise was added to
the system output resulting to an SNR=20dB. Three
algorithms were used, namely, the RLS, the BEFNTF
and the Normalized LMS (NLMS). Curve 1 (solid line)
corresponds to the RLS algorithm with filtering or-
der 2048 and forgetting factor A = 0.9998. Curve 2
(dashed) corresponds to the BEFNTF algorithm whose
filtering and prediction order was set equal to 2048 and
16 respectively, and the forgetting factor A was equal
to 0.9998. Curve 3 (dotted) corresponds to the NLMS
algorithm with order 2048. The step size was chosen so
as the algorithm to converge to the same error power
level as that of RLS and BEFNTF. The results of this
experiment show that the BEFNTF algorithm exhibits
a performance very close to that of RLS while NLMS,
as it was expected, converges much slower.

Other experiments with different system orders were
also carried out and the results (reported in [6]) were
similar to those presented here.

ACKNOWLEDGEMENTS

This work was supported by Computer Technology In-
stitute, P.O. Box 1122, Patras 26110, CREECE. The
authors would like also to thank Prof. G.V. Mous-
takides and Dr. E. Psarakis for useful discussions con-
cerning fast convolutional schemes.

4. REFERENCES

{1] N. Kalouptsidis, S. Theodoridis, (Eds.), “Adaptive
System Identification and Signal Processing Algo-
rithms”, Prentice- Hall Internationgal (UK) Ltd, 1993.

[2] J.J. Shynk, “Frequency-Domain and Multirate Adap-
tive Filtering”, IEEE Signal Processing Magazine, pp.
15-37, Jan. 1992.

[3] J. Benesty, P. Duhamel, “A Fast Exact Least Mean
Square Adaptive Algorithm”, IEEE Trans. on Signal
Processing, vol. 40, pp. 2904-2920, Dec. 1992.

[4] G.V. Moustakides, S. Theodoridis, “Fast Newton
Transversal Filters - A New Class of Adaptive Estima-
tion Algorithms”, JEEE Trans. on Signal Processing,
vol. 39, pp. 2184-2193, Oct. 1991.

[5] Z.J. Mou, P. Duhamel, “Fast FIR Filtering: Al
gorithms and Implementation”, Signal Processing,
vol. 13, pp. 377-384, Dec. 1987.

[6] K. Berberidis, S. Theodoridis, “A Block Exact
Fast Newton Algorithm”, C.T.I. Technical Report
#940420, April 1994.

1135

TABLE I: The Block Exact FNTF Algorithm

- Let [N — L +1, N] be the current data block.

Part 1 : Sample by sample computations

1.1 For n = N — L + 1: N using the prediction
part of the Stabilized FAEST compute:

o110 = 5325 (aym -1)
i) = gy (B0)
(1™) = (wna-1) = (825)+
Om—p
(“p+1("d))
am(n) = am(n—1) + 5;1:+1(")e£(")"
wbl1(n%)ep(n?)

with n% = n — m + p and z* the i** element of =

Part 2 : Block computation of the prediction errors
2.1 : Using fast convolution techniques compute
the following seed errors:
- ei,l(N - L+1), ...,ei,L+p(N +p)
- (N-L+1), ...,ep 14,(N+)
- egi(N—=L+1), cooreprap(N+p)
2.2 : Recursive scheme
Forn=N-L+2:N+p
Fork=n—-N+L:-1:2
e (n+ 1) =epp(n)—sp(n—k+ l)ei,k(")‘*'
uzi;(n —k+ l)ez,k(n)
ei,k-1(") = ei,k(") +€f(n = k+1)ey 1 (n)
e:,é:-l(") = e;,k(") + fg(" —k+ ey, (n+1)
En
a(nt) = e 1(n)—spy1(n)e] (m)+ubl1(n)ef, 1 (n)
n

Part 3 : Block computation of the filtering errors

3.1 : Using fast FIR filtering techniques compute
the following seed errors

- em1(N—L+1), ...,em(N)

- % (N—=L+1), ...,ep ((N)

3.2 : Recursive scheme

Forn=N-L+2:N
Fork=n—-N+L:-1:2

el p(n+1) = e ,(n) = shy (n— k+ 1)e] (n)+
wbti(nd = k+1)e} ,(n%)
em k-1(n) = emk(n) + em(n — b+ De, (n+ 1)
End ;
ev (n+1)=ep (n) - shyi(n)eg 1 (n)+
1
Uﬁil(n“)ez,x(n")
End

3.3:
er(N)=(o' (N-L+1) al(N))-

em(N = L+1))

e,,,(:N)

Part 4 : Filter block updating
4.1 : Formation of the involved matrices
Forj=1:L-1
smV = Lti+ D)= (gmanp 4y)+
m Sm (N_L+J) .
(8p+1(N—L+]+1))
Om—p—l

_ : 0
(N =L+ 40 =(gmay_ 144)+

Om—p
u£+1(Nd— L+j+1)
End
— Form matrices WyxL(N), SmxL(N), Unxr(N)
4.2 : Computation of the block updating term

4.2.1 : Using fast convolution techniques perform
the multiplication Wy xr (N)eL(N)

4.2.2 : Perform the multiplication: Smxr(N)eL(N)
4.2.3 : Perform the multiplication: Upmxz(N)eL(N)
4.3 : Filter updating
em(N) = cm(N = L) + Winxr(N)eL(N)—
Sme(N)EL(N) + Ume(N)éL(N)

FIGURE 1
20
15
10¢
5
g
3
w0 1
@
= 3
Ki% R Y
10 ﬂ‘\’“\
- ""‘ S NS
sk g g
e
20
0 50 100 150 200 250 300 350 400
Tterations (x100)

1136

