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ABSTRACT

In this paper, we present a fast algorithm for the compu-
tation of the wavelet transform in higher dimensional Eu-
clidean space R™ with arbitrary shaped wavelets. The al-
gorithm is a direct consequence of the convolution property
of the Radon transform and shows significant improvement
in speed. We also present a novel approach for the com-
putation of the Daubechies type wavelet transform under
the Radon transform domain where the n-dimensional mul-
tiresolution Analysis (MRA) is reduced to one-dimensional
MRA. We found applications of this approach on, for in-
stance, multiresolution reconstruction of the tomographic
image with the standard methods of denocising, where deter-
mination of wavelet coefficients is required under the Radon
transform domain. Along with the possibility of reducing
samples angularly with decreasing resolution, the efficiency
can be further improved. Besides, extra property such as
“rotated” wavelet can be easily implemented with this al-
gorithm.

1. INTRODUCTION

In recent years, the wavelet transform raises much interest
in various fields, particularly in the signal processing soci-

ety. Many applications of the Wavelet transform, such as.

in the joint time-frequency analysis [1, 2] and in the de-
sign of the numerical computational algorithms (3], have
demonstrated its performance to often be better than the
classical methods. We refer the readers to [1] for tutorial of
wavelet. Most of the current applications of wavelet analy-
sis are based on one-dimensional wavelet and the higher
dimensional cases are simply tensor product of the one-
dimensional wavelet. Although this direct extension also
maintains fast algorithms such as the row-column approach,
it may lose some extra properties of higher dimensional
wavelet, such as the rotation parameter which is used in
many applications, for instance fractal analysis {4]. Further-
more, the direct extension of the one-dimensional wavelet
transform can hardly be used in the evaluation of the non-
separable higher dimensional wavelet transform. In this
paper, we present a fast algorithm for the computation
of the wavelet transform of higher dimension. Instead of
only dealing with those wavelet transforms which are di-
rect extension of the one-dimensional ones, the algorithm
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is equally efficient in computing the wavelet transform with
wavelets of any arbitrary shaped, both separable and non-
separable. In the non-separable case, the n-dimensional
wavelet transform is basically decomposed into a number
of one-dimensional ones to achieve a significant speed im-
provement. The saving becomes even more significant when
the support of wavelet decrease, and the saving also increase
with the decrease of the Fourier support of the wavelet since
the radial samples can be reduced. For the case that an n-
dimensional wavelet transform is associated to a particular
multiresolution analysis, the original n-dimensional MRA
can be replaced by one-dimensional MRA with the pro-
posed approach. It is a direct consequence of the convolu-
tion property of the Radon transform.

We organize this paper as follow: In section 2, we demon-
strate a simple relationship between wavelet transform in
R™ and the Radon transform, then indicate how the Radon
transform can lead to a fast computation of wavelet co-
efficients of dimension greater or equal to two. In sec-
tion 3, we develop the Multiresolution Analysis under the
Radon transform domain. We consider the computation
of wavelet in R™ which are generated by temsor product
under the Radon transform domain. It had been shown
that such wavelets are of unconditional basis for several
functional spaces and they are best basis for statistical es-
timation [5]. Also, it is trivial for applying one-dimensional
MRA on radial variable of the projection domain which
defines isotropic/directional wavelets [6]. We also found
that our method can easily be used to compute the “ro-
tated” Daubechies’ wavelet transform as compared to the
traditional approach that it is quite complicated to directly
adopt MRA in R" for this purpose. Finally, we present
numerical experimental results to justify our assertion.

2. WAVELET COEFFICIENTS UNDER THE
PROJECTION DOMAIN

Basically, the evaluation of the wavelet transform coefhi-
cients can be considered as to perform convolution with
several scales of a particular mother wavelet with the input
signal. It is a well known fact that an n-dimensional convo-
lution can be decomposed into a number of one-dimensional
convolutions under projection domain[7], Suppose f(w) =
ff(z:)e"""’a!a:;i2 = —1 (throughout this paper, the inte-
gration range from —ooc to co if no limit is specified), § and
h is the Radon transform of g,k € R™ respectively, then,
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R(gxh) =hx,§ (1)

We refer the readers to [7] for the proof of eqn.1. For the
mother wavelet under linear transformation including scal-
ing and rotation,

¥(Az)(p, &) = | Blé(p, BT€) (2)

where B = A™!. Confine the Linear transform matrix A
into isotropic scaling and rotation matrix, we get a much
more simpler form,

$(42)(p,8) = 5 b(ap €~ O) ®)

where ¢ is dilation factor and ( is rotation angle. In general,
we have the formula for the computation of the wavelet
coefficients under the projection domain as follows,

RIf()ed(A2)) (5, 8) = (5,8 #p s lan, €= O (4

It should be noted that the projected wavelet are not
necessarily isotropic, that is, it can be angularly varied.
In the context of reconstruction from projection, we have
projection data only. We can apply the last equation to the
projected data f and take inversion to the result to obtain
the wavelet transform of f.

3. MULTIRESOLUTION ANALYSIS

On the other hand, for the cases that the wavelet transform
is associated to a particular multiresolution analysis defined
in R™, we can also compute the wavelet coefficients directly
under the Radon transform domain using one-dimensional
MRA only. Fourier slice theorem tells us that the radial
line spectrum at angle 8 of the Fourier transform of a given
n-dimensional function is the spectrum of the Radon trans-
form at angle 6. That is,

}(3,6):/f(p,é)e_wsd"z/f(z)e""i'idz (5)

We will use the Fourier slice theorem to obtain the wavelet
coefficients under Radon domain. Consider the wavelet of
Daubechies ’ type, define ¢(t) and ¥(t) as scaling function
and wavelet function respectively first,

L-1 L-1
$(t) =D h(n)p(2t —n);h(t) = 3 9(n)d(2t —n).

n=0 n=0

with g(n) = (=1)"h(L — 1 — n). The coefficient k(n) char-
acterizes the wavelet. The wavelet basis induces “MRA” on

L?*(R) so that
wcVhchicWw Vo CVos

st. (Vs ={e} [V = £%(R)
J€Z JEZ
The number of vanishing moments i1s related to the fil-
ter coefficients by L=2M. This implies fxb(z)z"‘dz;m =
0..M — 1. Certainly, this condition can be relaxed for par-
ticular application. One advantage of a “multiresolution”
architecture is that it leads to an efficient tree-structured
algorithm for the computation of the wavelet coeflicients.

By evaluating ¢; =< f,é¢sn > for the resolution J (pro-
jecting the function f on V), we can obtain the wavelet
and scaling coefficients as follow% .

¢, =< f o >=1/V2Y_ h(n—2k)ci
n=0
L-1
di, =< f, Y >= 1/\/-2.Zg(n —2k)ei!
n=0
This recursive style enables us to compute the inner prod-
uct between wavelets and the function to be analyzed in
a discrete fashion. In the Fourier transform domain, the
two-scale difference equation can be visualized as,

$(w) = mo(w=/2)§(w/2); $(w) = m1(wy/2)é(w/2)

where

mo(w) = Z h(n)e—iwn; m (‘U)) - Z g(n)e—twn (6)

For the two-dimensional MRA,
$(w2)$(wy) = mo(ws/2)mo(wy/2)$(w2/2)$(wy/2)

S(ws)P(wy) = mo(ws/2)ma(wy/2)d(w=/2)d(wy/2)

D(wa)d(wy) = m(we/2)mo(wy/2)d(wz/2)d(wy/2)

B(ws)P(wy) = m1(ws/2)ma(wy/2)$(w=/2)d(wy/2)

By defining the following:

P8 (wr) = mo(wrcos8)mo{wrsind) (7a)
5 (wr) = mo(wrcosd)ma (w-sind) (78)
95 (wr) = mi(wrcosd)mo(wrsing) (7¢)
pg(w,) = mj(wrcos)my(wrsind) (7d)

such that
~0 0 £1 <6 0 38
¢ (wr) = po(wr/2)¢ (wr/2); ¥i(wr) = pr(wr/2)0 (wr/2)

where k = 1, 2,3. The MRA under the projection domain is
then obtained. We can use eqn.6 to compute pg as given by
eqn.7 and use any Inverse Fast Fourier transform algorithm
to compute the ”projected filter coefficients” such that we
can rewrite the above equations as follows,
L(8)-1
$°(ry=Y_ PJ(n)¢°(2r — n);
n=0
L(8)-1
wi(r)= > Pln)s°(2r - n). (8)
n=0

where pf(w,) = i(:o)_l Pf(n)e™™¥r:k = 0,1,2,3 Note

that if the wavelet to be computed does not have com-
pact Fourier support, other method should be used for the
projection of the wavelets provided that the wavelet itself
have compact support. But most important, the ramped
projected wavelet remains compact and possesses the same
number of vanishing moments (see[8]).

Ascan be seen, eqn.8 is an “Angularly dependent MRA”
under the projection domain. At the first glance, the for-
mulation is natural and have no problem. However, let us
take a closer look at the spectral support of a general Radon
transformed function. Suppose the function have spectral
support of radius Q (inside circle C3), then 2Q sampling
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rate could be enough to sample it. However, it is impossi-
ble to represent a MRA under projection domain if we use
the same sampling rate to generate the projected wavelet
filters. The reason is that the wavelet filters will be aliased
and make the ramped wavelet filter not remains localized.
Although the scaling filter and lower scale wavelet filters can
be represented without aliasing, the aliased wavelet filter of
finest scale destroys the “nested architecture”. One solution
is to compute the wavelet coefficients of level J at level J-1,
the result is shown in figs. 6 and 7. Another method is to
change the sampling rate of sampled signal, (i.e. change the
radial bandwidth from C; to C; shown in Figure 1). Then,
the wavelet filters and scaling filter can be represented in

the new sampling rate and f(p,8) € span{$°?}. The num-
ber of samples to be increased is about 1/+/N. It should be

noted that the resulting wavelet coefficients should be the

same.

Oy

C1
c2
C3

Figure 1: Spectral supports of a function f € L*(R™)
and wave-lets.

4. NUMERICAL EXAMPLE

We use a simple numerical example to verify the algorithm
for the computation of non-separable two-dimensional wave-
let transform. Firstly, we define a wavelet R?, for example

2 2
the Mexican hat (1 — z? - yz)e'(i‘:?u-). Then we per-
form a two-dimensional convolution with a sample two-
dimensional image and obtain a standard wavelet trans-
formed signal. Secondly, we perform the fast algorithm we
proposed: we obtain the projections of the wavelet and the
sample image and then perform an one-dimensional convo-
lution between them radially. Then, we obtain a Radon
transformed wavelet coefficient for a fixed scale and rota-
tion. The result is then filter-backprojected to obtain the
required wavelet coefficients. A comparison of the standard
approach and the proposed approach is shown in fig.2. It is
seen that they are similar. Also, the Mexican hat and the
projected Mexican hat is shown in fig.3.

We realized the proposed algorithm on a SUN Sparc 10
workstation and made use of the system call getrusage() to
analysis the time used by the operations, not including the
system usage. We took five trials on each scale and used the
average to compare the performance. It is summarized in
table 1. The analysis is rough since we do not address the
sampling requirement but it already shows the significant
improvement in performance.

On the other hand, we realized the Multiresolution Anal-

ysis under Radon transform domain by using Daubechies’
filter of 2 vanishing moment (four coefficients). The wavelet
coefficients and scaling coefficients using our method are
shown in figs.4-7. In our simulation, the function are pro-
jected in 256 angles, each with 256 samples. For figs.4 and
5, the finest scale scaling filter is adjusted to 1/4/2 band-
width of the sampled signal whereas for figure 4 and 3, the
finest wavelet filter are obtained at the same sampling rate

of the sampled projection data so that the finest scale scal-
"ing filter is half the bandwidth of the sampled projection

data.

Figure 2: Up-Left is Wavelet transform of Lenna (2562256)

with Mexican (8z8),Up-Right is the corresponding projec-
tion domain result, Bottom-Left is Wavelet transform of
Lenna (2562256) with Mexican (64x64),Bottom-Right is the
corresponding projection domain result.

Figure 3: Left is Mezican, Right projected Mezican hat.

Figure 4: MRA in Radon domain of scale 1 with band-
width of the finest scale Scaling filter equal to /2 of projec-
tion data’s.
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Figure 5: MRA in Radon domain of scale 2 with band-
width of the finest scale Scaling filter equal to /2 of projec-
tion data’s.

Figure 6: MRA in Radon domain of scale 1 with band-
width of the finest scale Scaling filter equal to half of pro-
jection data’s.

Figure 7: MRA in Radon domain of scale 2 with band-
width of the finest scale Scaling filter equal to half of pro-
jection data’s.

5. CONCLUSION

In this paper, we present a fast computational algorithm for
higher dimensional wavelet transform of arbitrary shaped
wavelet by means of Radon transform. We consider the
computation of the separable and non-separable n-dimensional
wavelet transform. In non-separable case, the standard n-
dimensional convolution approach is basically reduced to
some one-dimensional convolutions. The saving becomes
significant when the support of wavelet decrease, and the
saving also increases with the decrease of the bandwidth
of wavelet since the radial samples can be reduced. For
the wavelet transform which is associated to a particular
n-dimensional multiresolution analysis, the use of the pro-
posed approach reduces the n-dimensional MRA to become
one-dimensional MRA. We found applications of this MRA
construction on the reconstruction of tomographic image.

Size of 2-dimensional Projection
wavelet | Convolution(sec) | method(sec)
8x8 45.48 28.51

16x16 100.13 29.00

32x32 248.51 30.17

64x64 719.99 32.85
128x128 | 2310.77 39.96

Table 1: Timing of convolution and projection method for
wave-let coefficient calculation.
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