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Abstract — The structure of arbitrary wavelet bases derived
from the generalized B-spline wavelets is introduced. An
arbitrary wavelet basis is constructed and then used to detect
the presence of dynamic solitons in the sea surface height as
measured by satellite altimetry. Comparisons are made for
wavelet decompositions based on several scaling functions.

I INTRODUCTION

The discrete wavelet transform (DWT) is uniquely
qualified as a detection algorithm for digital signals. The
transform, properly designed, is inherently localized in both
time and frequency, and as such is a valuable tool when
analyzing non-periodic data. The DWT decomposes a given
signal into a series of orthogonal wavelet subspaces. This
decomposition preserves energy relationships between the
subspaces, and the DWT can even be designed so as to be
orthogonal within each individual subspace. There is a great
deal of freedom that can be exploited in the DWT, as the
choice of the actual wavelet is an underdetermined problem
in the proper setting. We seek to optimize the structure of
the DWT for detection by examining the formation of
arbitrary wavelet bases that are ideally suited to the
detection of a given signature waveform.

In order to illustrate the utility of the DWT in detection,
we will consider the analysis of satellite remote-sensing data
over the ocean. In contrast to conventional shipboard data-
gathering techniques, satellite altimetry yields a more
comprehensive global representation of such phenomenon as
the sea surface height (SSH) of the world’s oceans. Ocean
dynamics dictate that this data will be highly non-linear and
time-variant, conditions in which conventional signal
processing techniques may fail. We consider the
construction of an appropriate wavelet basis to analyze
transient oceanic signals and then apply the analysis to
along-track SSH data in order to detect the presence of non-
linear waves called solitons in the Sulu Sea.

. CONSTRUCTION OF THE WAVELET BASIS

While Fourier analysis decomposes signals in terms of
sinusoids, wavelet analysis expands this idea to include
decompositions based on large families of localized basis
functions. These wavelets satisfy several well-documented
[1-3] properties, including the fact that the basis functions
are relatively isolated in both time and frequency. The most
well-known wavelets are those constructed by Daubechies,
denoted as y, which are compactly supported in time and
are orthogonal to one another within and across the wavelet
subspaces [2]. It can be shown that the Daubechies wavelets
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are but a subclass of a more generalized framework
proposed by Chui [3]. Building upon a generalized
Bernstein-spline (B-spline) structure, this framework
generates many wavelet bases that may be constructed with
any number of design goals in mind, including, among
others, compactly-supported bases and causal filter
implementations. Wavelets exhibit dilation properties which
ensure that the representation of any discrete signal at some
resolution level is determined from the representation at the
next finer resolution level. The entire transform may thus be
implemented with an efficient filter bank [4].

The core of the detection problem is to identify and locate
a given signature pattern within an arbitrary data sequence.
For periodic signals, Fourier analysis lends itself to accurate
and efficient identification algorithms. However, for
localized (and thus non-periodic) signals hidden in a much
larger data sequence, Fourier analysis falls far short of
solving the detection problem. Wavelet analysis, on the
other hand, offers a much more natural approach to such
problems. Given the infinite number of wavelet bases that
are available, the challenge then becomes to identify and
construct the wavelet that will most effectively solve the
detection problem.

We will build upon the B-spline representation for the
scaling function and wavelet in order to construct a wavelet
best suited to the detection process. Wherever possible, we
will adhere to Chui’s notation.

A fundamental result of interpolation theory states that
any function residing in T, the space of polynomials of
order m, can be generated using the corresponding B-spline
of order m [5). These spline functions are constructed as the
m-fold convolution of the characteristic function with itself:

B (x) =B+ (x); B(x)=1, xe[0,1) o))

We can choose as our scaling function ¢(x)any one of the
B-splines. Since the splines themselves form a basis for the
fundamental space V, a linear combination of them will
also form a basis. The associated two-scale symbol P(z) is

P(z) =(42)" S(2) 03]

Generally, S(z) is chosen to be unity so that the associated
two-scale sequence {p,} is of minimum compact support,
resulting in the cardinal B-spline scaling function of order m.
From the scaling function, the remaining two-scale symbols
0(2), G(z), and H(z) are constructed so that the properties
of the wavelet transform are satisfied. In particular, the
wavelet function has as its two-scale symbol

0(2)=z""E(-2)P(-z7")E™'(2*)K(2?) €)
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where E(z) is the Euler-Frobenius polynomial associated
with the B-spline and K(z) is restricted to the Wiener class
W, the class of Laurent series in z for which the
corresponding sequences are in £;. This implies that
feW= f(z)#0, |gJ=1 In constructing the cardinal B-
spline wavelets, choose K(z) so that the resulting Q(z) (and
hence w(x)) has minimum support:

K(z)=-2E(2)
0(z) = —2E(-2)P(-7"")

However, this restriction on K(z) is unnecessarily harsh. In
fact, we can use the additional freedom in the choice of
K(z) to construct a wavelet which will best satisfy the
detection problem. In particular, the new wavelet should
resemble as closely as possible the signature waveform, so
that the resulting coefficients in the DWT will be maximized
when the signature is encountered in the data stream.

Before formulating the problem of constructing the new
wavelet, let us first examine the means by which the scaling
and wavelet functions are generated by the two-scale
sequences {p,} and {g,}. By definition, the continuous
functions at resolution level j are given by convolution of the
function at the (j-1) level with the two-scale sequence:

9= pdQ2x=nm), Y(x)= Y 4,62x=n) ()

)

(During the analysis of the signal, we assume that the signal
originates in Vg, the space corresponding to j=0, with the
subspaces becoming more coarse as j decreases. Thus
j€{0,-1,-2,---}.) When iterated, equation (35) translates
into an algorithm by which the integer values of ¢(x) and
w(x) at any resolution level may be calculated. Define

¢ o > Po(2) (6)

as the z-transform of the scaling function at the root
resolution level j =0, sampled at the integers. Then for
j =-1 equation (5) is equivalent to

¢(2_l x)|2_1x=n (——z——) (p—l (Z) = ¢O(Z)P(Z) (7)

By induction, at the j % resolution level we have
, i
(2’ x)|2,x:n > D(2) = Dy(2) HP(22 ) ®)
n=0

for j<0. Similarly, the representation for {(x)at the j®
resolution level is

V’(zjx)|21x=n : qu (Z)
TERG =Y
¥i(2)= ‘150(Z)Q(Z2 ) HP(Zz )
n=0

Once the cardinal B-spline wavelet has been constructed,
we can create an entire class of wavelets which generate the
same signal subspace by taking an invertible linear
combination of the original wavelet. In our framework, we
would like this new wavelet W{x) to resemble the detection
signature as closely as possible at a given resolution level.
This new wavelet must also satisfy a two-scale relation, and
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so we redefine not the wavelet itself but the two-scale
relation which generates it. This is the equivalent of
choosing K(z) in equation (3) as

K(z)=-zE(2)K(z), K(z)eW (10)
The new wavelet at a given resolution level j is then
ip(zjx)ly‘x:n € < -> lilj(l)
an

'i’j(z) = ®y(2) [I?Q](zzm'l )Hﬁ P(z2")
n=0

K(z) is now in terms of dilated powers of z. Expressed in
the time domain,
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Since {IE,,} _, is upsampled |j| times, the majority of the
] 2

coefficients in this sequence are fixed and equal to zero. For

example, let j =—1 be the resolution level at which we want

to approximate the signature waveform. Expressed in

matrix form, (12) becomes:

(12)

[wvo 0 0 0 0 O] Eo [, |
v,z 0 0 00 O ]Zl 78
v, ¥ 0 0 0 O /Ez - v, (13)
vi v 0 0 0 0|k v,
Ve ¥, Yo 0 0 0O E4 Vs
\¥s v yp O 0’ J:1 L P

where ¥, are the samples of the signature waveform at the
integers and

v, = W(Zj x)lz,x___n, neN

are the elements of the convolution matrix. Note that since
the constrained coefficients in the vector k are zero, we
retain only every (2/)% column from the standard
convolution matrix. In more concise form, this reduces to

Rk=V¥ (14)
Inversion of the convolution matrix R is an ill-conditioned
problem if there are roots on the unit circle. This becomes a
key consideration in attempting to solve equation (14) for
j=0. In general, the B-splines produce wavelets whose
sampled versions will necessarily have roots on the unit
circle. In fact, by substituting in for the cardinal form of
P(z) in the equation for ¥/(z), we have

1jl=2
~ ~ 2lit-t b4
¥,(2) = @y () [KQ] 2 )H P(z")
n=0
-
~ jl- jl-1ym n\m
- okl e T
n=0
with A(z)e W. Equation (15) contains (j—1)m roots at
z=-1and (j —2)!m’_2 roots at z =1. Since this equation
holds even for the most generalized form of the B-spline

family of wavelets, it would seem that there is no guaranteed
solution to the problem. However, the subsampling of the
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matrix in (13) for j <O stabilizes the problem. Note that R
is never square and therefore not invertible in the usual
sense. The problem is best solved using the Moore-Penrose
pseudoinverse of R, which results in the minimum error-
energy (least-squares) fit to w(x) [7].
k=R*¥=(R'R)"'R'¥ (16)
where R* denotes the conjugate transpose Having solved
for K(z), form a two-scale symbol for the new wavelet as

Orew ()= K(2)Q()
=-2K()E(-0)P(-z"")

The new wavelet is guaranteed to satisfy the properties of
the wavelet transform and should make an ideal detector for
the signature waveform with which it was designed.

We next turn to the formation of a wavelet basis for the
detection of solitons in satellite altimeter data. The method
outlined in this section will be used to create a new wavelet,
and then the resulting wavelet transform will be applied.

amn

III. INTERNAL WAVES AND SOLITONS IN THE SULU SEA

The Sulu Sea presents a unique opportunity for the
detection of solitons in the ocean’s surface signature.
Located just to the southwest of the Philippines, the sea is
bordered by land masses which harbor and then deflect large
internal (sub-surface) waves according to the tidal currents
present in the area. These large-amplitude internal waves
create smaller-amplitude surface waves called solitons
which should be detectable by satellite remote-sensing of the
SSH [7]. We use data from the TOPEX/Poseidon satellite
mission, which is equipped with an on-board altimeter
capable of millimeter-precision measurement of the SSH
along satellite tracks.

Solitons are isolated waves which travel independently of
each other or other oceanic waves. Based on empirical
analysis, oceanographers are able to model solitons as

z(x,t)=%Asech2[w/Z(xi~3+2At+x0)] (18)

where x is the distance along track, ¢ is the time since
inception, and A is a constant that depends on the surface
wave amplitudes [8]. Fig. | illustrates a wave train
composed of three solitons generated from this model.
Solitons create a non-linear signal of relatively short
duration which can easily become lost in surface noise or
large-amplitude signals. In order to detect the presence of
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Distance along propagation track (km)
Fig. 1. Soliton wave train based on analytical modeling.
The TOPEX altimeter samples this signal at 10Hz (approx.
17.57km™).
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Fig. 2. DWT of the SSH over the Sulu Sea using

Daubechies’ wavelet of order 4. The original data is shown
at the top, with detail signals displayed below. Longer
wavelength signals show up in the lower levels of the
transform. The final projection onto the coarsest subspace
(LP) is at the bottom.

these solitons, the SSH data was transformed using a
conventional Daubechies’ wavelet of order 4. The resuiting
wavelet decomposition is shown in Fig. 2.

The original signal is shown at the top of the figure.
Decreasing levels correspond to the detail signal at coarser
resolution levels (lower-frequency projections). From the
magnitudes of the detail signals in the figure, we can see
several good candidates for soliton wave trains identified in
the SSH, one most notably at approximately 118.4°
longitude. The wave train appears mostly in the detail
signals corresponding to j=0 and j=-1, indicating that the
energy present in the solitons is spread out over a larger
frequency band and is not localized optimally by the
decomposition. In addition, the noise level is rather high on
the resolution levels where the soliton train shows up,
making for less reliable detection.

The Daubechies wavelet does a- reasonable job of
identifying the wave train. However, a plot of the actual
wavelet (Fig. 3) shows that it does not bear as much
resemblance to the soliton as it might. The wavelet
decomposition performs better with basis functions that
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Fig. 3. y/;‘, wavelet used for the decomposition in Fig. 2.
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closely resemble the signal of interest. With this in mind, an
arbitrary wavelet may be constructed to form a more optimal
decomposition.

A new wavelet is constructed using the method outlined
in Section III. First, the cardinal B-spline scaling function
and wavelet of order 4 are constructed as in Chui. We then
pick a resolution level at which we would like to see most of
the soliton train energy appear, say j=-1. Calculate the
discrete samples of ,, and then form the matrix R as in
equation (14). Take ¥ to be a vector of values from the
analytical model of the soliton wave train in Fig. 1 sampled
at the same rate as that of the satellite altimeter (10Hz for the
TOPEX altimeter). Calculate the pseudoinverse of R in
order to solve for k. The new two-scale sequence,
K(z)Q(z), yields the new wavelet. Fig. 4 shows the
cardinal B-spline scaling function and wavelet of order 4, the
analytical soliton train from Fig. 1, and the new wavelet.
The agreement between the new wavelet and the soliton
train is remarkably good, with a mean-squared error of
1.2x 107> between the samples of the two functions.

Using the new two-scale sequences, the SSH data is
passed through the DWT and the results are shown in Fig. 5.
As expected, the localization of the soliton train is now
much more pronounced against the background noise.

In constructing the new wavelet, it is generally in the best
interest of the designer to ensure that the signature
waveform resides at least partly in the subspace generated
by the original cardinal B-spline wavelet. It is unrealistic to
expect the transform to concentrate energy from a signal
with a large mean into any one (or even several) wavelet
subspaces. Note in Fig. 4 that the low-frequency
components of the soliton wave train have been removed
prior to constructing the new wavelet. Also, we require
K(z) e W in order for the wavelet transform to be fully
reversible, although equation (16) does not guarantee such a
condition. Since we can factor a minimum-phase equivalent
for K(z), the only problem that may arise is when roots of
the polynomial have magnitude close to one, in which case
the synthesis filter H (z) will become unstable. In the
detection problem, however, we are generally not concerned
with reconstructing the signal once it has been decomposed.

IV. CONCLUSIONS

Wavelet analysis proves to be increasingly useful in
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Fig. 4. Construction of the new wavelet basis. At left are
shown the cardinal B-spline scaling function and wavelet of
order 4. The dotted wave to the right is the soliton train from
Fig. 1, and the solid line is the newly-constructed wavelet.
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Fig. 5. Discrete wavelet transform of the same SSH data
using the constructed wavelet. Note the pronounced
localization of the wave train energy in the transform at j=0.
Signal noise is suppressed much better with the new wavelet.

applications dealing with inherently time-variant, dynamic
systems. The wavelet decomposition lends itself to a
considerable amount of diversity, since it can be based on a
large family of mother wavelets, with consideration made
for such practical implementation issues as stability and
causality. The B-splines make particularly useful basis
wavelets from which to construct wavelets more appropriate
to the detection problem. Comparisons done on actual data
confirm that the new wavelets perform better under the
detection criterion than such standard wavelets as the
Daubechies’ or the cardinal B-splines wavelets.
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