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ABSTRACT

Most of machine speech analysis and processing is
based on a warped spectral representation. The intent of this
paper is to present a method by which proper warped repre-
sentations can be computed efficiently. In the case of log-
warping functions, the methods of this paper produce a
wavelet-like transform as a linear convolution of a single
log-warped wavelet basis element and a log-warped repre-
sentation of the signal. The resulting doubly warped trans-
form is referred to in this paper as a Mellin-Wavelet
transform. The majority of the paper is devoted deriving
design parameters for implementation of the transform, with
speech as the primary application.

INTRODUCTION

The normal process used in computing the warped
spectra in speech research, is to first compute a standard
short term power spectrum and then construct an approxima-
tion of the warped power spectrum by computing weighted
averages of the power-spectral coefficients. The errors intro-
duced by this approximation can impact on performance.
The warped spectral filters must have non-uniform band-
width even though the transform on which they are based
represent uniform sampling in both time and frequency. In
addition, the Schwartz inequality applies to the weighted
averages used to approximate the filters.

A theoretically better method for computing the
warped spectra is to sample the output of a bank of filters
which have the desired spacing and bandwidths. In principal,
these filters can be easily constructed, but the computational
load is rather heavy. In this paper, a fast method of effec-
tively implementing a.constant Q filter bank is developed. In
the case of log warped spectra, the method producers a a
warped wavelet-like transform based on warpings of both
time and frequency by the same logarithmic warping func-
tion. Under these warpings, the full wavelet-like transform
can be computed with a single short convolution which may
be computed using fast convolutional methods. In addition, a
windowing function may be applied by modifying the wave-
let basis rather than the data. Under this architecture, the
windowed log warped transform may be computed with no
additional computational load over the un-windowed trans-
form.

CONVENTIONAL WARPED SPECTRUM

Before discussing the M-W transform, we first describe
the process normally used to approximate the warped spec-
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trum. As a first step in the process, a short time amplitude
spectrum is computed from a 10 to 20 millisecond win-
dowed snapshot of the data. For a real, discrete signal F ()
sampled at a uniform sample rate @, the complex spectrum

has:the representation
2(N-1)

Flo,M= Y Fpwm ¢ kO,
k=0 (1.
wherew, = w/n, n=1,..,N, i= J—1 and W(k) is an
appropriately chosen windowing function. The correspond-
ing amplitude spectrum has the representation

P(a, M) = [F(a,N)|. (12)

The conventional warped amplitude spectrum is func-
tionally equivalent to a matrix product of the form

Py = ¥P, (13)

where ¥ is a positive matrix of filter weights used to com-
bine coefficients of the amplitude spectrum to approximate
the desired filter responses and

T
Ploy M)~ (14)

For constant Q filterS, the integration times of each fil-
ter should be on the order of the reciprocal of the filter band-
width. Since equation (1.3) is based on uniform integration
times, independent of filter bandwidth, there are unnecessary
time-frequency ambiguities in the warped spectrum under
this representation. If the integration time is adequate to
properly contain energy within the narrow filters, the time
resolution of the coarser filters suffers. If the integration time
is chosen to optimize the time-frequency resolution of the
coarser filters, the energy in the narrower filters are cor-
rupted by the out-of-band energy from nearby filters.

A better filter implementation would be to design a
bank of properly spaced constant Q filters with the appropri-
ate bandwidths. The integration time of these filters should
be dependent on the filter bandwidths and should be on the
order of the reciprocal of the filter bandwidths. Since the
time-dependent FFT is essentially a bank of uniform band-
width narrow-band filters with complex output, we can
express the constant Q filter outputs as functions of the Fou-
neﬁ coefficients, If F & tlS the time varying output of the
o filter andF (O is the J FFl"coefﬁment on the interval

, then the tlme -varying power of the o filter is of the
form

P= (P(0,N), ...,

P, (8 (1.5)

= |Zajﬁj(c)|2.
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The approximation which is always used in speech pro-
cessing is

Py(0) = Z]ajﬁj(C)f (1.6)

Clearly this power estimate is Schwartz inequality
approximation. A more subtle point is that it is based on a
circular convolution rather than the correct linear convolu-
tion. The argument is usually made that the formula (1.6)is
correct assuming independence of the coefficients. This is
only the case for phasers whose frequencies are in the exact
center of the FFT cells.

DESCRIPTION OF TRANSFORM

We now introduce the M-W transform, which is the
focus of this paper. The M-W transform is a special case of a
larger class of doubly warped transforms which contain both
it and the Fourier transform. In general, this class of trans-
forms operate on a warped time-domain signal to produce a
spectrum which is warped. In order to uniformly cover the
warped spectrum, the time domain warping function must be
matched to the frequency domain warping function and the
transform basis. In addition, since the filter bandwidths are
nonuniform, the intervals of support for the filters are depen-
dent on the warping functions.

In general, a doubly warped transform is of the form

Fryyy (@) = JF(W,(t))bwf(m) o e

where » is an arbitrary transform basis which covers the
warped spectrum and w, and w,. are time and frequency warp-
ing functions. If both warping functions are logarithmic, a
wavelet-like transform may be computed as a linear convo-
lution with a single basis element. The resulting transform is
a Mellin-Wavelet transform.
In the case of log-warping, the discrete transform

represents an exponential sampling of the continuous spec-
trum. The warping function which drives this sampling is

X —X,

0
" (Inb -Ina) ) (2.2)

Ina +
. X —X
wlog (xe [xO, xl] ,a,b) =e

To complete the transform description, we must specify
a basis and a time domain warping function. We consider
first a Fourier(Morlet)-like basis consisting of compiex
phasers of the form

@) =0 - A 2.3)

To create a ‘Morlet” MW basis of the type (2.3), we
must warp them in the time domain and define time domain
support regions which result in proper filter bandwidths.

For uniform covering of the warped spectrum, the filter
support regions must have length proportional to the recipro-
cal of the filter bandwidth. In the case in which the spectrum
is log warped, we see that a time domain warping function of
the form (2.2) has the interesting property that translations of
intervals under this warping satisfy the desired filter support

region property. The problem is that the origin must be
avoided since the logarithm is undefined at zero.

If we select a bank of filters which appears uniformly
spaced in the log warped frequency domain, then the support
intervals L  for the constant Q filters must satisfy

oL = const 24)

w

Equation (2.4) is equivalent to requiring that basis ele-
ments each contain the same number of cycles in their
respective support intervals. If we assume that each phaser
(2.3) has initial phase ¢ = 0 at ¢t = 0, and we require that the
support intervals for each phaser start at the same phase, we
have the properties that the basis elements are a time warped
wavelet basis, and the support intervals in the warped time
domain have the same length. Choosing the basis in this
manner guarantees uniqueness of the basis and support inter-
vals, and results in the property that the basis elements and
support intervals are translations of each other in the warped
time domain and the frequency responses of the resulting fil-
ters are translations of each other in the warped frequency
domain.

In general, if we choose w, and w, to be the logarithmic
warping function w,, , and » to be any basis with support
interval excluding the origin, but satisfying the wavelet basis

property
bwa(kwa') = b“’a(k“’at), 2.5)

we have that the resulting doubly warped transform (2.1) has
the property that the resulting warped basis elements

bm’ w, (t) = bm (wlog 1)) 2.6)
are translations of each other in the warped time domain, sat-
isfying the property

ba, Miog (0) = by Mgy O k(@B

where k (o, B) is independent of time

For suitably chosen wavelets, the functions (2.7) will
span the spectrum and thus form a basis which we call the
Mellin-Wavelet basis for the warped MW transform. This
basis has the property that the doubly logarithmically warped
transform with this basis may effectively be computed as the
linear convolution of any one of the basis elements and the
log warped incoming signal. If the original wavelet basis b
has finite support, fast convolution methods may be used to
compute the linear convolution. Unfortunately, the transform
is not necessarily translation invariant since the basis ele-
ments are time translations of each other. In order for the
transform to be of use, the signal must be preprocessed to
properly phase all spectral components.

CALCULATION OF TIME DOMAIN SAMPLING
FUNCTION FOR A ‘MORLEt’ MW TRANSFORM

In designing the sampling function for a constant Q
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log-warped spectrum, the general form must be an exponen-
tial of the form

an +
Lon+h

O

where { is the base time for the transform, w_ is the original
uniform sample rate, and N is the sum of the length of the
filter in the warped time domain and the number of outputs.
The two free parameters, o and B, must be chosen such that
the resulting warped filter bank covers the desired frequency
range. For ‘Morlet’ transforms, there is sufficient informa-
tion to almost completely determine the sampling function.
For general MW transforms, the sampling function may be
determined from considerations similar to those used in this
discussion, but the function parameters are dependent on the
choice of the wavelet basis.

We assume that we wish to design a transform with L
filters based on a warped convolution of length N-L. We
further assume that the filters must cover the frequency inter-
val [@, ®,]. Under these assumptions, the rate of sampling
is related to the derivative of the sampling function, and we
have the relationship

t, = w(mN, o B0 =L+

,n=0..N-1,3.1)

ﬂaw _ow
oon|  om| _ ., (32)
n= llo 0
This equation reduces to
a=h{&} (3.3)
L ,

The choice of B is somewhat arbitrary, but consider-
ation must be given to its choice since it affects the sampling
interpolation for small values of n and must not result in a
violation of a Nyquist-like condition for large values of n.
The sampling interpolation is due to the problem that the
exponentially spaced samples are, in general, more closely
spaced than the original uniformly spaced samples for small
values of n. A Nyquist-like sampling condition is violated if
the transform basis wavelet is under sampled on the tail (i.e.
for large values of n). To get an upper bound on B, we
assume a Nyquist condition which is equivalent to the
restriction that the minimum sampling interval for the
warped sampling function must be at least one half cycle (for
real sampling) of the sinusoid from which the basis wavelet
is generated. For complex sampling, the minimum interval
must be at least one cycle. The reader is warned that this cri-
terion is estimated and not derived analytically.

Under these conditions, the Nyquist criterion (for real
sampling) is equivalent to

N
ea(N—l)+B_ea(N—-2)+Bs_s_

20, 3.49)

(3.5)
This inequality is equivalent to

®
s (3.6)

Bs<ln (ea(N—l) _ea(N-Z))'

2(01

-(N-2) 1 -1

o (o L o \L
= In| —| % LS
Zml o, @,

Performance of the transform may be expected to improve
for smaller values of B, but care must be taken to choose B
so small that the performance degrades due to interpolation
errors caused by over-sampling of the signal for small values
of n.

The maximum interpolation required for this choice of

B is given by N-2
L
_( a+B ﬂ O @
Ami” = (e —e Sﬂo— ZO—— (37)
] u
If A . is an integer, there is no interpolation. If A . <1,
min min

the samples must be interpolated from the original uniform
sampled signal, and if A . >1 the resulting samples are
decimations of the original sequence. In any event, for non
integer values of A . . some filtering algorithm must be
used in re-sampling.

As an example, if we assume a typical situation in
which o = 8000Hz, ©, = 300Hz and w = 3000Hz then
the following table gives typical design parameters.

(3.8)
N 128 128 256 256 512 512
L 32 64 64 128 128 256
(o4 0.0720 0.0360 0.0360  0.1800 0.1800  0.0090
B -3.8807 13639 -3.2413 20301 -2.5751  2.7097
Amin 0.0015 0.1433 0.0014 0.1382 0.0014  0.1358

In each of the columns in table (3.7), B was chosen so
that the last two samples of a Morlet basis generator are sep-
arated by half a period. In the examples in (3.7), choices of L
and N in the ratio of approximately 1:2 result in worst case
interpolation situations in which the signal would have to be
up-sampled for a few samples by a factor of a little less than
7. By contrast, the corresponding situation for L:N ratios of
1:4 results in worst case interpolations requiring up-sam-
pling for the first few samples by a factor of 667 or more. If a
windowing function such as a log-warped raised cosine is
used, both the region at the beginning of the basis generator
where interpolation is worst and the region at the end of the
basis generator where the decimation is worst are attenuated
by the windowing function. Because of this, a low order,
interpolating filter may be used if A, 1s sufficiently large,
say 0.1 or greater.

As an example, we can construct a “Morlet” MW basis
generator. With the choices of a and B, this basis may be
constructed by sampling a complex phaser whose frequency
is f, by the sampling function (3.1). For the phaser
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o) = 'w“', i= -, (3.9)
the sampled basis generator is
(¢(t0)!"',(¢) (tN_L_l))' (3.10)

All other basis elements are translations of this generator in
the warped time domain

For an arbitrary wavelet basis, the MW basis generator
is obtained by sampling the mother wavelet with the warped
sampling function(3.1).

CALCULATION OF SAMPLE SPACING

Let o, o and o be the original uniform sample rate,
the lower cutoff frequency and the upper cutoff frequency
and let 7.7, andt T, be the times of the first sample, last
sample and the m sample in the transform interval respec-
tively. Since log0 = —~, we must start the correlations at
some phase other than zero. We assume that all basis func-
tions start with initial phase ¢, = =. In this case, the time of
the first sample is dependent only on the upper cutoff fre-
quency

T = 3

1 20, - 4.1)
The sample times are given by
T = exp|lo T+ (lo T -logT))|,m =0...n-1
[ § 8 ’] 4.2)

-m-1
- (7 r’:)
To calculate the upper sample limit, we assume a Nyquist-
like criterion that the maximum sample interval between two
consecutive samples is such that there are at least two sam-
ples for every period of the basis elements (real sampling) or
one sample per period (complex sampling). Since the basis
elements are warped time translations of each other, for real
sampling, this condition is equivalent to

ms

2=EI=Tn_Tn—2 4.3)
1 1

—1 n-1 ( — 2)n -1

= (Tz Tﬁ) -7,
1 1
(&)
" 20 u ’
u
for complex sampling, the equivalent condition is
i T Tn 2
“’z (4.4)

Unfortunately, the closed form solution of equation (2.3) for
T, is not readily apparent, but the equation can easily be
solved numerically. For complex sampling, the equivalent
formula is

70, = TnTacz @4.5)

With this final parameter estimate, the “Morlet” design is

essentially complete.
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