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ABSTRACT

The goal of this paper is to derive an approach for designing
nearly shiftable scaling functions for multiresolution anal-
yses (MRAs). Because this method does not increase the
sampling density, the sparseness and efficiency of a dyadic
grid is preserved. It contrasts with other attempts to the
same problem which suffer either from oversampling or from
being computationally expensive and data dependent.

The algorithm reshapes a starting scaling function by
modifying the Zak transform of its energy spectral density
(ESD). The paper shows that although the modified signal
does not strictly satisfy the 2-scale equation, the approx-
imation error is sufficiently small. The result is a wavelet
representation whose subband energy is “nearly” invariant
to translations of its input. The paper will illustrate this
property with specific examples.

1. INTRODUCTION

Orthogonal wavelet transforms and multiresolution analy-
ses (MRAs) have become very popular in signal processing.
Subband decompositions provide cfficient representations.
They are computationally fast and the coarse to fine repre-
sentation is useful in many applications. A major drawback,
however, is their lack of translation invariance. To illustrate
the problem, suppose one starts with an input signal that
lies entirely within a subband. As the input signal is trans-
lated in time, energy will escape into other subbands even
though the spectral content of the signal does not change.
Strang [1] has commented on the invariance problem as a
major drawback in using orthogonal wavelet transforms in
pattern recognition applications.

Several approaches have been developed to address this
problem. One approach maintains full sampling density
along the time axis [2] but this representation is highly
redundant and computationally expensive. The approach
by Mallat [3] develops a translation invariant representa-
tion based on the zero—crossings of the full density wavelet
representation. While this reduces the redundancy of the
representation, it does so at the expense of computational
efficiency and requires the full density of samples along the
time axis as an intermediate step. The approach of Ode-
gard, Gopinath, and Burrus [4] has been to find wavelets
that minimize the invariance problem. Unfortunately, they
do not provide a direct method for making this selection.

This work was partially supported by DARPA through ONR
grant N00014-91-J183

1097

Because no discrete representation can ever be truly
shift invariant, the approach in [5] is to find shiftable rep-
resentations as an alternative. A function s(t) is said to be
shiftable if its arbitrary translates can be represented by its
integer shifts,

s(t—7)= Z axs(t — k).

k

This maintains the efficiency of a sparse sampling grid while
allowing one to interpolate any intermediate value. The
shiftable constructs in [5] depend on the assumption that
s(t) is a periodic, bandlimited function. Furthermore, the
results of shiftability have not been directly applied to MRAs.

The goal of this work is to construct, in a general way,
scaling functions that are shiftable. By doing so, it will
be possible to find wavelet representations whose subband
energy is invariant to translations of the input. Specifically,
we are interested in finding functions that simultaneously
satisfy:

1. Shiftability: g(t — 1) = 3_, beg(t — k).

2. The 2-Scale Equation: g(t) =Y, hug(2t — k).

Our previous work in [6] addressed the first issue by deriv-
ing a general expression for the error in representing the
translates of a function by its integer shifts,

E(r)=Js(t—7) =D ars(t— k).
k

We have shown that this representation error can be ex-
pressed in terms of the Zak transform of the energy spectral
density (ESD) of s(t),

E(r)=1- /o ——lzzlfs'l((’;?)' df (1)

where S(f) is the Fourier transform of s(t) and assuming
Is]l = 1. In general, the Zak transform of a function k(z)
is given by (see [7] for a tutorial)

Zu(z,y) = ) h(z + k)e ™",
k

Equation (1) provides a necessary and sufficient condition
for the error to go to zero for all 7. We demonstrate that by
modifying the Zak transform of the energy spectral density
of s(t), a new function g(t) will be constructed so that it
is “nearly” shiftable. That is to say that the corresponding
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£(r) for g(t) is such that £(r) < € for some acceptably
small e.

But does the nearly shiftable g(t) satisfy the 2-scale
equation? This question will be analysed by finding the
Zak domain equivalent of the 2-scale equation which yields
a solution to the problem. Hence, we present a method
for constructing “nearly” shiftable scaling functions. The
concept of working in the Zak domain to modify signals
has originated in [8] in the context of multitarget radar
problems.

Until now, the only shiftable MRAs were designed for
representing bandlimited functions by constructing scaling
functions that approximate the sinc function [4, 9]. Our
general approach makes no such assumptions and provides
an algorithm for constructing new scaling functions as op-
posed to selecting one from an established library of scaling
functions.

Section 2 presents the algorithm and results for con-
structing shiftable functions. In Section 3, we provide re-
sults demonstrating the existence of nearly shiftable scaling
functions.

2. THE CONSTRUCTION

The following construction starts with a function that is
not shiftable and reshapes it in the Zak domain into a new
function that is “nearly” shiftable. The algorithm is iter-
ated as needed to construct a more shiftable function. For
the following, the Fourier transform of s is assumed to sat-
isfy

ALY IS(F+R)IF<B
k

where 0 < A < B < oo and ||¢]| = 1.
For a shiftable function, its representation error is zero
for all possible 7, £(r) = 0, which, from (1), implies

! |Z|.<>‘|’(-f’"')|2 _
/0 _Z|Sl:(f,0) df =1. (2)

Equation (2) says that the mean square error £(7) de-
pends only on the area under |Z|5;3(f, 'r)| (normalized by
Zys)2(f,0)). Hence, the shape of |Z|s|z(f,r)| does not af-
fect the £(7), only the area of each slice parallel to the f
axis does.

A first candidate solution is to define a new function g
through the Zak transform of its energy spectral density as

ZIG|:(f,T) =

where C(7) is given by

-1/3
/ Zisp (5P 17
Z|SP (f, 0) :
This construction guarantees that £(r) = 0. Unfortunately,
it does not guarantee that the resulting |G(w){* will be non-
negative, hence it does not produce a valid energy spectral

density. In [6], we have determined the necessary and suffi-
cient conditions for a Zak transform to be the transform of

C(T)Z|s|z (f, T).

a valid energy spectral density. However, we will use (2) to
define a new intermediate signal G(f) via its Zak transform

Zs(f,7) = C(r)Z)5p(£,7)-

The Fourier transform of the nearly shiftable g(t) is now

G(f) = |G(f) e

where 85(f) is the phase of original signal S(f). Figure 1
shows the resulting g(t) after one single iteration of apply-
ing the algorithm to the Daubechies D8 scaling function
normalized to unit energy. Notice that the resulting func-
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Figure 1: Original D8 and reshaped scaling functions.
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Figure 2: Mean square error £(7) of D8 and reshaped scal-
ing function.

tion does not look drastically different from the original,
but, it is much more shiftable as can be seen from figure 2
which plots the mean square error £(7) as a function of 7.
The D8 scaling function looses more than 25% of its en-
ergy when representing itself delayed half way between grid
points whereas the reshaped function looses only 1%. The
algorithm can be iterated further for greater loss reduction.
This algorithm does not preserve the orthogonality of the
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original function. However, one can use the orthogonalizing
trick in [10] to generate nearly shiftable orthonormal scaling
functions.

3. RELATION TO SCALING FUNCTIONS

In the previous section, we saw how one function can be
transformed into another that is more shiftable. In this sec-
tion, we find that although the resulting g(t) from the pre-
vious section does not strictly satisfy the 2-scale equation,
it yields an excellent approximation as is demonstrated by
its mean square error. Furthermore, the coefficients used
in this approximate 2-scale equation themselves converge
to a valid scaling function which in turn is an excellent ap-
proximation to the g(t) we were interested in the first place.
Hence by using these coefficients to specify the scaling func-
tion, we provide a means for creating nearly shiftable scaling
functions. We start by finding the Zak domain equivalent of
the 2-scalc equation and using this to identify valid scaling
functions.

Define a scaling function ¢(¢/2) = 3, had(t — k) and
define ¢;(t) = $(27t). Taking the Zak transform of the
2-scale equation yields

Zg_y (1 = H(f)Z¢°(1", f)

where H(f) =Y, hiei?™1* This is the Zak domain equiv-
alent of the 2-scale equation. Hence the ratio of the Zak
transform of the scaling function with the Zak of itself at
the next highest resolution produces a periodic function in f
and is independent of 7. The periodicity of H(f) comes free
because it is a consequence of the Zak transform’s proper-
ties. The ratio’s independence on 7 is because ¢(t) satisfies
the 2—scale equation.

l
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Figure 3: Ratio of Zaks of reshaped function Z

To test whether or not the resulting g(t), as derived ac-
cording to the previous section, satisfies the 2-scale equa-
tion, we ran the algorithm first with ¢(t) as the starting
function, then with ¢(t/2) to get g(t) and g(t/2) respec-
tively. Next, we took the ratio of their Zak transforms
to identify if g(¢) satisfies the 2-scale equation. We have
used the D8 scaling function once again to demonstrate this

procedure and have plotted the ratio of Zak transforms in

figure 3. At first glance, 'Z’;_,(S‘r?‘;z appears to be indepen-

dent of T but closer inspection reveals otherwise. Figure 4
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Figure 4: Closeup of ratio of Zak transforms.

is a closeup plot of figure 3 as a function of f. Each line
corresponds to a different value of 7. If the ratio were in-
dependent of 7, the different lines in figure 4 would not be
discernible. Nonetheless, g(t) is an excellent approximation
to a scaling function and the coefficients {ha} of the 2-scale
equation are given by any slice of the ratio in figure 3 par-
allel to the f axis. The coefficients for this example are
plotted in figure 5. As a measure of the quality of the ap-
proximation, consider the mean square errox

lo-(t) = D hugo(t = B)|* =35x 107", (3)

- Figure 5 is a plot of the coefficients generated by this ex-

ample.
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Figure 5: 2-scale coefficients of reshaped D8 signal.

Similar results have been found for all of the Daubechies
scaling functions tested. Figure 6 illustrates the resulting
reshaped signal when the Daubechies D16 is used as the
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initial function and figure 7 shows its corresponding error.
As was the case with the D8 scaling function, the resulting
function satisfies the 2-scale equation approximately with
a mean square error as in (3) of 1.3 x 107,
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Figure 6: Original D16 and reshaped scaling functions.
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Figure 7: Mean square error £(7) of D16 and reshaped
scaling function.

4. CONCLUSION

This paper presents a general construction for generating
nearly shiftable scaling functions. The construction re-
shapes the energy spectral density of the starting signal
in the Zak domain and designs the new signal by keeping
the phase of the original one. This produces a new function
that is much more robust to representing arbitrarily shifted
replicas of itself.

Although strictly speaking, this algorithm does not gen-
erate a valid scaling function, it has been demonstrated that
it does provide a very close approximation. This allows for
a wavelet representation whose subband energy is invari-
ant to translations of the input because of the improved
shiftability of the new scaling function.

(10]
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