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Abstract

The orthonormal wavelet transform is an efficient way
for signal representation since there is no redundancy
in its expression, but due to aliasing in the decima-
tion stage it lacks the often desired property of shift
invariance. On the other hand, the oversampled or
nonorthogonal wavelet offers a finer resolution in trans-
lation; thus reducing the effect of shift of origin, it be-
comes more robust to changes in the initial phase of the
signal. In some areas of signal processing, such as wide-
band correlation processing, sensitivity to time align-
ment necessitates the use of the nonorthogonal wavelet
transform. The price paid for the advantage of robust-
ness to shifting is the introduction of redundancy in
the expression. In many applications, both of these
two properties are needed in different stages of signal
processing. Thus there is a need to know the condi-
tions under which the redundant and nonorthonormal
wavelet transform coeflicients can be derived from the
orthonormal wavelet transform coefficients. The an-
swer provides us with a convenient way to switch be-
tween these two forms: the orthonormal wavelet for
efficient expression, and the nonorthogonal one when-
ever it is necessary for feature extraction.

1. Introduction

The orthonormal wavelet transform is an efficient way
for signal representation since there is no redundancy
in its expression{l, 2], but due to aliasing in the deci-
mation stage it lacks the often desired property of shift
invariance. On the other hand, the oversampled and
nonorthogonal wavelet transform offers finer resolution
in translation; thus reducing the effect of shift of the
time of origin it becomes more robust to changes in
the initial phase of the signal[3, 4, 5, 6]. The dis-
crete wavelet transform with no decimation at all is
shift invariant. In some areas of signal processing,
such as wide band correlation processing, sensitivity to
time alignment necessitates using the non-orthogonal
wavelet transform(7, 8, 9, 10] . For increased reliability
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in detection, scale parameters between powers of 2 are
also needed to obtain wavelets that are more closely
matched to the signal. The price paid for the advan-
tage of robustness to shifting as well as scale matching
is the introduction of redundancy in the transforma-
tion. In many applications, both of these two proper-
ties are needed in different stages of signal processing.
For example, data acquisition, transmission and stor-
age aim for efficiency, but when processing signals for
detection, it is more important to get an accurate scale
and time shift. Thus there is a need to know the con-
ditions under which the redundant and nonorthoner-
mal wavelet transform coefficients can be derived from
the orthonormal wavelet transform coefficients. The
answer provides us with a convenient way to switch
between these two forms: the orthonormal wavelet for
efficient expression, and the nonorthogonal one when-
ever it is necessary for feature extraction.

2. Interpolation Matrix

Because the orthonormal wavelet transform contains
complete information about a signal, its conversion to
an oversampled one is a problem of interpolation. We
consider interpolation along the constant-scale transla-
tion axis as well as constant-translation scale axis.

For convenience and without loss of generality, let
the finest resolution of the signal z(t) be on scale P.
We have

z(t) = 2P/ )" e p(2Ft —n) (2.1)

where ¢(t) is the scaling function and ¢f are the scaling
coefficients at scale P. The signal z(t) can also be
expressed as

2(t) = F1 om/2dmy(2mt — n)

" ISRt —n) (2:2)
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where 1(t) is the mother wavelet function and d7* are

the wavelet coefficients at scale m. The scaling and
wavelet coefficients are calculated as the inner products

+00
er =2m2 [ 2(t) - $(2™t — n)dt
—00

oo (2.3)
dp =2m/2 [ z(t)- (2™t — n)dt.

-0Q

The wavelet coefficients at scalem,m € {0,1,2,-- -, P},
and scaling coeflicients at scale 0 produce an exact ex-
pression for the signal.

2.1. Interpolation along the translation axis

The oversampled wavelet coefficients at scale 0 with an
oversampling rate of 2F are given by

-0 0o
dj~2P+k=+f z(t) -t — 5 — k/2F)de
= (2.4)

ke {0,1,2,---,2P -1}
Substituting eq.(2) in (4), yields
-0
dj.2P4k
=Er T iy

n m=0

{+f° P(2™t — (n~ 2™ . j)) - P(t ~ k/2P)dt+}

+ 35l

n

T ot = (n = 37) -t — k2t

(2.5)
Let:

£, = a2 f° Y(2™E — n) - Y(t — k/2P)dt

ma= ] 6t )9t - k/2P)at
(2.6)

For compactly supported wavelets and scaling func-
tions, £ 't and 7 x are zero for many values of n. For

example, if ¥(¢) has unit support, then &n'; vanish ex-

cept for integer values of n in {27 (k/2F —2-™), 2™ (k/2F +

1)] or for n in the interval with sufficient bounds of
[~1,2P+! — 1]. Then, eq.(2.5) can be rewritten as

P-1 ny
dj. 2"+k“z Z n-amjt Z Mn-jk
m=0n=n, n=ns
(2.7)

One way to implement eq. (2.7) is to consider P se-

P-1
quences {5,, k} . and realize the n-sum of the first

term as a convolutlon, respectively, with P sequences

{dm, m—O Each convolution is subsampled by 2™ - j
and summed over m. The process has to be repeated
for each j and k. A more elegant and efficient formu-
lation is to reconsider eq. (2.6) and define the related
cross correlation function

+o0
Tm(T1, T2) = 2™/2 / B(2™t — 1) - Yt — m)dt. (2.8)

Sampling r at 71 = 2™~ Pl and 1, = 2~ Pk yields

rm(l, k) = 2712 +f° $(2mt — 2™=Pl) . y(t — 2-Pk)dt.

= 9mi2 ' y(amt - am-P (- b)) - ple)a
T o=k

It is clear that £7* ym.; ; = rm(2P~™n — 2Pj — k) and
eq. (7) contains the convolution of the sequence d7p*
with the sequence r,,, which has been decimated by the
factor 2P-m

-0

dj.2p k= Z St d™ . (2P-™mn - 2P — k)
m=0n=ng
+2n3 g *Mn-jk
n=ns:
(2.9)

Alternatively, define the sequence 67 = dJ* when n =
12P-m where [ is an integer and 6™ = 0 otherwxse We
have

- =lew .
diappr= 2,20 L 67 rm(n—2%j — k)

m=0 n=0

(2.10)
+ 38 ik

where Np = (N — 1)2P~™ has been chosen as a limit
on n for convenience. Define

-0 -0 -0 T
J0
dJ' = [dj.zP,dj.2P+1, ceny J'.2P+2P_1] ’

T
Ay = [db",o, - 0,d7,0,..,0, dl’j{[‘_l]

9P=m seroes
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and
0 0 0 0 0 T
r= [76n = 00)0) o Yor = Cl,O, "7(N-1)2P = CN—I] :
Then
P-1
d?=> RnAn+Er
m=0
where the interpolation matrices Ry, and = are given
respectively by

(2.11)

R,, =
rm{c) rm(a+1) e rm(B)
rm(ae—1) rm(c) rm(a+1) rm(8—1)
rm(e =) (6 = 7)
(2.12)
s(e)  s(e+1) - - <(B)
_ s(a=1)  cla) (a+1) s(B-1)
@1 - 0 A7)
(2.13)

with « = —2Pj and B = a + (N — 1)2FP-m
92P~1 We also have used

and v =

+oo
s(n) = / ¢(t — 27 Fn) - p(t)dt.

2.2. Interpolation along the scale axis

The wavelet transform coefficients are defined at frac-
tional scales m+1/L for ! € {1,2,.., L -1} and for con-
venience we limit the integer scale to m € {1,2,..,P —
1}.We have

~-mL+1
d, =2m+i/L)/2 / z(t)p(2™H/ Lt —n)dt (2.14)

As in the previous case, we substitute for z(¢) from
eq.(2.2) and obtain
dntit = g}:’ v z] “Ldir(m - j,1,k,n)
+ Y550 c2p(m, 1, n, k)

where limits on the translation variable £ have been
chosen for convenience and depend on the wavelets
used; and where

A(m = j,1, k,n) = 2m=i+l/L)/2,
J(@m-itiLe 4 oam=i+/Lg — n)y(t)dt,

(2.15)

(2.16)

and

PRl k) = 2AmH/L)/2

(1, k) = 2(m+1/L)/2 (2.17)
[w(@mHiiLt 4 2mHLE — n)g(t)dt.
As before, we define
. — o(i+D)/2L
Ax(i,l,n) =2 (2.18)

[ 9T b 260/ _ myp(edt
which is related to A by AR(Li,1) = A(4,1,k,n). Eq.

(2.15) can now be rewrltten as

EN:I :rlm—P+1
+Ek s o (F k)

Define the vectors
Dk = [dg’ 01 "07 dllu 07 "0’ d{_l]T
N~
(L —1) zeroes

m _ [d?+1/L,d;,n+2/L, v d;‘n+(L—1)/L]T

and
0o _r1.0 0 Q T
Cc _[CO)CI:"CN—IJ

,with I = L(m - P+1)and J = (P — 1)L + 1, the
matrix Ag =

AR J) Ap(L,J=1) ... Ag(L,0)
F4,J-1) k( -2) AR(L,1)
81, — L+1) X (I, L-1)

and the LXN matrix IT with (IT); , = p*(l, k). We
thus have

= A;D; +TIC°. (2.20)
k

We note that A; is defined by the entries in its first
row and column and its operation on Dy defines a
convolution. The same is not true about the matrix
II because of the two kinds of translation variables in-
volved: 2m+/Lk and n. The term 2™+H/LE — n cannot
be written in terms of k — n due to the fact that 21/L
is an irrational number for all integers L > 1.

It is also possible to follow the same method used
here, to derive coefficients at fractional scales and trans-
lation points. Although it is straightforward, the deriva-
tion is omitted in this paper.

2.3. Interpolation with oversampling rate of other
than 27

In the derivation of the translation axis interpolation
formula, it was assumed that the signal was scale lim-
ited to level P and that the oversampling rate was cho-
sen as 2F. In some applications, that choice may be
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limiting. When the oversampling rate is 29, Q > P,
we recall that the signal is scale limited to P, so that
d'=0, m>P

Then the only changes are in the interpolation matrix:

' &mp =272 +f° PY(2mE — n) - P(t — k/29)dt

M= ] Bt —n) 9t — k/29)i

[ m=0,1,2,---,P.
(2.21)

When the sampling rate is lower than 2P, or Q <
P, then

m, = 2m/2 +f° Y(2™t — n) - PY(t — k/29)dt = 0,

for m> Q.
(2.22)

“due to the orthogonality of the wavelet functions
at a scale higher than @ and the scale 0.

When the oversampling rate is not a power of 2,
the basic idea still works, although the interpolation
matrix may be more difficult to obtain.

3. Implementation with Filter banks

Use of the interpolation matrix provides us an easy
way to get the wavelet samples at an arbitrary posi-
tion of scale and translation. The idea is useful es-
pecially when we are only interested in some special
positions, e.g. the sample with the largest energy of
projection onto scale 0. In hardware implementation,
the price for doing so is that the control flow will be of
a high complexity, therefore in many application envi-
ronments, the method may still not be very attractive.

For an easy implementation of oversampling of the
translation axis, especially for real time systems, use of
filter banks gives us another possible way. It has less
flexibility compared to the interpolation matrix, but
its hardware structure is much simpler. A direct way
to do this is, to first pass all the orthonormal wavelet
samples through the synthesis filter banks to get the
reconstructed signal, then use it to get the oversam-
pled wavelet coefficients. Combining the synthesis fil-
ter bank for orthonormal wavelet transform and anal-
ysis filter bank for nonorthonormal wavelet, we get a
useful structure.

4. Conclusion

Methods to interpolate wavelet transform coefficients

along the translation as well as the scale axes are dis-
cussed. Interpolation matrices are derived. Alterna-
tives to implementation of the translation axis over-
sampling by using filter banks are suggested. Use of
interpolation matrices for interpolation in either do-
main is practically preferable as samples at any rate
and any translation point are readily available.
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