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ABSTRACT

We introduce a class of matrices, called Gabor-type ma-
trices and show that the product of two Gabor-type ma-
trices is again a Gabor-type matrix of the same type. The
key point for applications is based on the observation that
the multiplication of Gabor-type matrices can be replaced
by some special “multiplication” of associated small block
matrices. We propose an efficient algorithm, which we call
the block-multiplication, and which makes explicit use of
the sparsity of those Gabor-type matrices. As an interest-
ing consequence, we show that Gabor operators correspond-
ing to Gabor triples (gk, a, ) commute for arbitrary signals
gx(k = 1,2) provided that ab divides the signal length.

1. INTRODUCTION

A Gabor family is obtained from a Gabor atom (or Gabor
window, or basic building block) by time-frequency shifts
‘along some discrete TF-lattice. Such a family is usually
not orthogonal. Therefore the determination of appropri-
ate coeflicients in order to obtain a series representation of
a given signal in terms of this family has been considered
a computational intensive task for a long time. Meanwhile
it is well known, that it is enough to determine some so-
called dual Gabor atom v (with respect to the given lattice
generated by (a,b)). The samples of the STFT of the given
signal, with the (conjugate of the) dual Gabor atom as anal-
ysis window, are then an appropriate set of coefficients.

In a number of papers [4, 5, 6, 7, 10, 11, 12], authors
have described several practical approaches to calculate the
dual Gabor atom for the discrete and periodic (= finite)
setting. Many of those methods however are very much
restricted in terms of the size of the window, due to limita-
tions of the size of matrices that can be handled or inverted
on a given computer.

In order to imitate the continuous Gabor transform, it is
natural to sample the Gabor window sufficiently dense and
obtain an approximate dual Gabor window by means of
discrete methods. Even if the support of the window itself
is not large, a high sampling rate will lead to a discrete
Gabor transform with “huge” window size.

The aim of this note is to propose a new way of perform-
ing the multiplication for a special class of matrices, which
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will be called Gabor-type matrices. We will substitute or-
dinary matrix multiplication and also matrix inversion by
a special block matrix “multiplication” and a related inver-
sion procedure. Based on this special multiplication, we can
calculate the dual Gabor window and the inverse of the Ga-
bor frame matrix for “huge” Gabor windows. For a much
more detailed discussion we refer to [9].

Definition 1 (Gabor-type Block Matrix) We call an
N x a matriz B a Gabor (a, b)-type block matriz if all the
nonzero entries of B are distributed in the k-th subdiagonals
only: (for k =0, £b, £2b, ..., £(b — 1)b with b = N/b).
Equivalently, B can be written as

c1,1 0 .. 0
0 C2,2 . 0
0 0 Ca,a
Chy1,1 0 0
0 Cht2,2 0
B =

0 0 Chtara
C(p—1)b+1,1 0 e 0
0 Clo—1)bt2,2  ° 0

\ 0 0 c(b—l)&-&-u,u
where cxg €C.

We call b x a matriz B the associated “nonzero”-block
matriz. B is constructed from B in the following way:

11 2,2 e Caa
- Cit1,1 Cot2,2 e Citaya
B = . . .
Cb—1)b+1,1  C(b—1)b+2,2 C(b—1)b+a,a

Besides, we keep the notations introduced in [7]. Specifi-
cally,
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(1). The signalis always viewed as a row vector in oy
or equivalently as some N-periodic double infinite sequence.
a and b denote lattice constants, which means they have to
be divisors of N. We call @ = % and b = % the associated
dual lattice constants.

(2). The rotation operator with rotation number a acts
on vectors as follows:

rot(z, a) 1= (ZN—a, TN=-a+1, -y TN—1,Z0, -

Similarly we can define the rotation operator rot on
column vectors.

(3). The matriz rotation on matrix B with rotation
number a is understood as a rotation acting on all the col-
umn vectors of B. That is,

rotm(B, a) := (rot(B, a), rot(Bz, a), ..., rot(Bm, a)),

where B is the I-th column vector of B, 1 =1, 2, ..., m.

Definition 2 (Gabor-type Matrix) We say thatan Nx
N matriz G is a Gabor (a, b)-type matriz if G can be written
as

G= [B, rotm(B, a), ..., rotm®~!(B, a)]

where B is an N x a Gabor (a,b)-type block matriz and
rotm = rotm(-, a) is the matriz rotation operator. We will

call B the Gabor-type block matriz associated to G. B is
also called the “nonzero”-block matriz associated to G.

Remarks

It is obvious that a Gabor-type matrix G, the associ-
ated block matrix B and “nonzero”-block B determine each
other completely. Therefore, we only need to work with the
small size “nonzero”-block matrix B. )

Write G = (ak,1) v » We usually consider the entry ax,
as N-periodic both in column and row subscripts. Equiva-
lently, ai4n,j+N = @i,j for 4,5 € Z.

By the definition of the Gabor-type matrix and rotm, it
is easy to check that the k-th (for k =0, £b, £2b, ..., £(b—
1)b) subdiagonals of G are g-periodic. Let B = (ti,;)nxa>
and B = (8i,)pxa » then we always assume that tiyn,jta =
ti; and Sits,j4a = 3i,; for 4,5 € Z.

2. MAIN RESULTS

In this section we present some of our main results and
propose an algorithm to manipulate discrete huge Gabor
transforms [9].

Theorem 1 The matriz product of two Gabor (a,b)-type
matrices is itself a Gabor (a,b)-type matriz. Furthermore,
& non-singular matriz is of Gabor (a, b)-type if and only if
its inverse is of the same type.

Since Gabor-type matrices are completely determined
by the associated “nonzero”-block matrices, it is possible
to describe matrix multiplication directly in terms of those
small block matrices. The following theorem gives the de-
tails of this new “block-matrix multiplication”.

Theorem 2 (Block-Multiplication) Under the assump-
tions of Theorem 1, assume that B = (¥r,1)pyq and Bz =

o zN—a—l) .

(v 1)pxq Gre two Gabor-type “nonzero”-block matrices as-
sociated to Gabor (a, b)-type matrices Gy and Gz. Let B.=
(Wi j)yxa be the corresponding “nonzero”-block matriz for
the matriz product G = Gy * G2 Then, for ¢ = 1,2, ..., b
ands=1,2, ..., a, the general entry of B can be calculated
via the formula:

b
Wq,s = E :“rl(M),rz(w)Upm
r=1

where r1(p,q) = mod(b+qg—p+1,b)
and r2(p,s) = mod (s +(p —1)b, a) .

Using the concept of matrix algebra [1], we have the
following statements.

Theorem 3 Let
G ={G e@™*Y : Gis Gabor (a, b)-type}.

Then ¢ C CV*N is matriz algebra of dimension ab. Fur-
thermore, if ab divides N, then G is an ab-dimensional com-
mutative matriz algebra.

We call ¢ a Gabor-type matrix algebra. It is easy to
see that if G € G is nonsingular then G™* € .

Let ¢ € €V is a Gabor atom and (a,b) be lattice con-
stants (i.e., divisors of N). Using the notation given in (7],
GAB = GAB(g,a,b) is the &2 x N Gabor basic matrix
whose row vectors form the Gabor family {MmbTaag}. The
Gabor operator S corresponding to (g, a, b) has the follow-
ing matrix representation:

Sz =z + (GAB' + GAB) forz €€V,

where we call G = GAB' * GAB the associated Gabor ma-
trix. Since Gabor matrices are Gabor-type matrices {7], we
can easily deduce an interesting consequence of Theorem 3.

Corollary 1 Let (gx,a,b) be two Gabor triples for k = 1,2,
the associated Gabor operators Si are defined as

Forg :

Skz = Z Z {(z, MmtTnagt) MmpTnagr

n=0 m=0

where z € €. Assume that ab divides N (especially, the
critical sampling case where ab = N ), then the Gabor oper-
ators Sy for k = 1,2 commute , i.e.

85152 = S25:.

Applying the special block-multiplication established in
Theorem 2, we obtain the following algorithm, which is
called the block-frame (BKFR) method. It is a very
efficient method to invert the frame operator and relies on
a combination of two ideas: First, the “slim” matrix mul-
tiplication, and secondly the idea to replace the standard
Neumann series expansion of the inverse frame operator
(usually described in terms of a recursion) by the so-called
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“power-of-two” trick, which is based on the product repre-
sentation for partial sums of the Neumann series of order
2! — 1 as described in [2, 3]. This approach can be used
to compute the dual Gabor atom and is workable even for
huge Gabor atom. The details are given in [9].

Algorithm 1 (BKFR-method) Let (g, a,b) be any Ga-
bor triple which generates frame and G be the associated Ga-
bor frame matriz. Then there exists some posilive constant
0, (0 < 1o < 1) such that for any r,0 < 7 < 19,Q := rG
satisfies || — Q]| < 1 —r||G]| := ¥ < 1 and therefore
Q7' := (rG)™! and the dual Gabor atom § can be obtained
iteratively. Setting o = rg and forn > 0,

farr =Gnx (I+(T-Q"), (1)

one obtains
im §, =g
n—00

with the error estimate after n iterations

113 — 31l < ¥* I3l
Remarks

e Since G is a Gabor (a,b)-type matrix (7], I — Q is
also a Gabor (a,b)-type matrix. (I — Q)*" forn =
0, 1, ...in Eq. (1) can be calculated iteratively via the
special b x a block-matrix multiplication by Theorem
2. Therefore the algorithm 1 can be performed very
efficiently.

e The above approach requires ideally the precise knowl-
edge of the frame bounds. Since the (best) Gabor
frame bounds are usually not easily determined, we
have to use some reasonable upper bound U, for the
frame operator. The following turns out to be quite
useful [8]: )

Us =||Gll1 = || Bllx
where B? is the “nonzero”-block matrix corresponding
to G. B can be computed directly from the triple
(9,4,b) [7]. For a matrix A = (ai;), ,, € C"*™, the
l-norm of A is defined as:
Al = maxigjm 3,1, laiil
Then we can take

2

r=———/—and Q=G
Us+ 5o 9

in the BKFR-Algorithm. In this case, one can easily
check that v = |Us — &1/ (U,, + u‘—.,) . A specific al-

gorithm for computing the best Gabor upper bound
is proposed in [9].

e If the Gabor atom g is well concentrated, the as-
sociated Gabor matrix S is usually diagonal domi-
nant. In this case, we perform the algorithm 1 with
S4 = D'+ S instead of S, where D is a diagonal ma-
trix with the same diagonal elements as S. We call
this special algorithm modified BKFR-method.

o Algorithm 1 also gives a new way of computing the
inverse of the Gabor frame operator.

3. NUMERICAL RESULTS

In this section we present some of our numerical results.
The experiments shows that the Algorithm presented here
has the big advantage of dealing with arbitrary Gabor sig-
nals even with huge signal length efficiently. All the numer-
ical experiments were carried out using MATLAB 4.00n a

SUN-Station (COMPstation 1 M40).

Figure 1 shows the comparison of convergence rates to
compute the corresponding dual Gabor to the illustrated
Gabor atom between the BKFR-method and CG-method
presented in [7, 8].

Figure 2 shows some Gabor atom and the associated
dual Gabor atom; the original Chirp-signal and the recon-
structed one. The signal length is ¥ = 5120 and the lattice
constants are (a,b) = (32,10). The reconstruction relative
error in this case is in order of 1073, which can be con-
sidered as an error-free reconstruction for all practical pur-
poses.

Figure 3 shows the comparison of convergence rates of
the modified BKFR-method, the BKFR-method and the
CG-method. The signal length N is 2400 and the lattice
constants (a, b) are (40, 25). The reconstruction relative er-
ror is about 10712,

4. CONCLUSION

We have introduced a class of Gabor-type matrices and have
shown that it is closed under the usual matrix multiplica-
tion. Based on this fact we have proposed an algorithm
to perform the Gabor-type matrix multiplication through a
special form of block-multiplication. As an application to
discrete Gabor analysis we present the BK F R-algorithm
to compute the (dual) Gabor analysis window iteratively,
usually requiring only a few iterations.
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Figure 2: Gabor atom, the associated dual Gabor atom;
the original Chirp-signal and the reconstructed Chirp. The
signal length N = 5120 and the lattice constants (a,b) =
(32,10).
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Figure 3: Convergent rates Comparison between CG-
method, BKFR-method and modified BKFR-method.
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