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ABSTRACT

In this paper, the existing sampling theory for MRA sub-
spaces is generalized to several more cases. We consider
derivative sampling, multiband sampling and sampling of
wide sense stationary (WSS) random processes. We also
show that the synthesizing functions form a Riesz basis for
the corresponding MRA subspace.

1. INTRODUCTION

It is well-known that spaces of bandlimited functions are
MRA subspaces. Walter [1] showed that other MRA sub-
spaces share some properties of spaces of bandlimited func-
tions. Namely, under very mild conditions on the scaling
function ¢(t), any f(t) € Vo = span {¢(t — n)} can be re-
covered in a stable way from its integer samples {f(n)}.
Janssen {2] extended Walter’s results for uniform, but not
necessarily integer sampling. He showed how any f(t) € Vj
can be recovered from {f(n + a)}. In both of the above
cases, there exists a function S(t) such that f(t) € V; can
be recovered from its samples as follows

FO =) f(ta)S(t = n) (11)

The problem with these schemes is that S(t) is guaran-
teed to be infinitely supported if the scaling function ¢(t)
is compactly supported (except for a few trivial cases). In
[3] authors showed that if restricted to orthonormal MRA,
then the Haar MRA is the only case where we can have both
&(t) and S(t) compactly supported. In (1.1) all synthesis
functions are shifted versions of a single function S(t). If we
allow more general synthesis functions, it can be shown that
compact support is attainable. We will see an example of
this in Sec. 2. In [4], compactly supported scaling and syn-
thesizing functions were achieved by periodically nonuni-
form sampling. It was also shown that reconstruction from
local averages and oversampling offer some additional nice
features.

In this paper, we develop some further extensions. Namely,

we consider:
1. Derivative sampling (section 2.2);
2. Multiband sampling (section 2.3);
3. Sampling of WSS random processes (section 2.4).
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It can be shown that the synthesizing functions form a Riesz
basis.

2. FURTHER EXTENSIONS

In this section, we continue work done in [4]. Before going
into derivations, we will introduce the notation and make
clear our assumptions.

2.1. Assumptions and notation

We assume that {¢(t — n)} forms a Riesz basis for V;, C
L*(R). We use Janssen’s assumption [2], namely, that ¢(¢)
is bounded and that

> 1t —m)l < Cy (2.1)

converges uniformly on [0,1]. Since {¢(t — n)} is a Riesz
basis for Vq, then for any f(t) € V}, there exists a unique se-
quence {c,} € I such that [uniform convergence is insured

by (2.1))
F&) =Y cuglt = k). (2.2)

k
If the sampling times are t, = n + tn, 0 < u, < 1, then

ft) =) cxdltn —K) =D ced(un +n—k)

k k
_ i T Jw Jwy _jnw
=5 ‘[.‘ C(e)Pu, (%)™ dw, (2.3)

where &y, (e’“) = Y, ¢(un +k)e™7*“. The last expression
will be used in all the derivations.

2.2. Derivative sampling

It is well known that a bandlimited function f(¢) can be
recovered from samples of f(¢) and its derivative at half
the Nyquist rate (see [5] for further references). In this
subsection, we want to show how this can be extended for
the case of wavelet subspaces. Let us demonstrate the idea
on the example of reconstruction of f(t) € V; from the
samples of f(t) = fo(t) and its derivative f'(¢) = fi(¢) at
rate 1/2.

We assume that the scaling function ¢(t) = ¢o(2) is
compactly supported, and that it has a derivative ¢'(¢) =
¢1(t), which satisfies Janssen’s conditions stated in subsec-
tion 2.1. Consider uniform sampling, i.e., t, = n 4 u. The
above assumptions enable us to differentiate (2.2) term by
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term and get

Filta) = cxdn(ta — k) (2.4)

k

Using (2.3), we have

s = [ emo@mEngs e

-

for 1 = 0,1, where

®i(¥) = Z bi(u +n)e” ™. (2.6)

From [2], we know that f(t) can be reconstructed from

{fo(ts)}. This means that the sequence of derivatives {fi(¢s)}

is redundant. The idea is to use this redundancy to re-

construct f(t) from subsampled sequences {fo(t2s)} and
{fi1(t2n)}. Notice that this scheme corresponds to a two-
channel maximally decimated filter bank with & (e’ “’) and
®,(e’“) as analysis filters. The situation is shown in Fig.
2.1.

f(2n+u o)

f(2n+u )

Fig. 2.1. An interpretation of derivative sampling.

The following theorem provides sufficient conditions for a
stable reconstruction.

Theorem 1. Let E(z) be the polyphase matrix of anal-
ysis filters in Fig. 2.1. Any f(t) € Vs can be recovered
from samples {f(t2)} and {f'(f2a)} in a stable way if det
E(e’“) # 0 for all w € [—x, ).

If the theorem is satisfied, f(¢) can be reconstructed by

F®) =) fltza)So(t=2n)+ D f'(t2n)S1(2 = 2n),

where So(t) and S:(t) have Fourier transforms given by
Go(’“)®(w) and G1(e’)P(w) respectively. These synthe-
.sizing functions form a Riesz basis for the space they span
(Vo in this case). This can be concluded from the properties
of the synthesis polyphase matrix.

The above example can be easily generalized to the case
of higher derivatives. Assume that the sca.ling function ¢(t)
and its M — 1 derivatives satisfy Janssen’s conditions from
subsection 2.1. Then f(t) can be reconstructed from the
samples of f(t) and its M — 1 derivatives at 1/M th Nyquist
rate, provided conditions of Theorem 1 are satisfied. Syn-
thesizing functions can be constructed as in [6]. Let us
illustrate the above derivations on the case of quadratic
splines.

Example 2.1. Consider the MRA generated by the quadratic

splines. The scaling function is

/2, for0<t <1,

#(t) = —(t—3/2)24+3/4, for1<t<?2,
31t -3)%, for2<t<3,
0, otherwise.

o(t), ¢'(t) and integer samples are shown in Fig. 2.2.

T CeD
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Fig. 2.2. ¢(t), ¢'(t) and its samples at integers.
From the figure it is easy to see that ®o(z) =) ¢(n)~
=1/2z"'+z ) and ®1(2) =) ' (n)z " =2 172

|
E(z) = ( /2 1/2) and R(z) = (; 1"/22), so that
the FIR synthesxs filters are Go(z) = z + 2° and Gi(z) =
2/2 — 2% /2. Finally, synthesis functions are Sp(¢t — 2n) and
S1(t — 2n), where So(t) = (2 + 1) + ¢(t + 2) and Si(t) =
Fo(t+1) = 34(t +2).

2.3. Multiband sampling

Consider a signal F(w) as in Fig. 2.3. If F(w) is regarded as
a lowpass signal, minimum necessary sampling rate is 2w,.
If it is tegarded as a bandpass signal, it can be verified that
aliasing copies F(w + kw,) caused by sampling at the rate
ws do not overlap. Therefore, minimum sampling rate in
this case is w,.

Fig. 2.3. An ideal bandpass signal and its aliasing copies.

The aim of this subsection is to find what the equivalent of
this situation in wavelet subspaces is.

Spaces Vi, roughly speaking, contain lowpass signals,
whereas Wy spaces contain bandpass signals. So far, we
have examined lowpass signals only (ones that belong to
Vo). We will show that if a signal does not occupy the
whole frequency range that Vj covers, it can be sa.mpled
Assume that f(t) € W_; + W_, +
This means that there are sequences
,{c=1n} € I? such that

at a lower rate.
e+ Woy C Vo
{C_l,,.},{c_g,,.},...

-1
f(t) = z Zc,,,,.z"/w(z"t-n). (2.7)

k==J =n

From Walter's work, we know that since f(t) € Vb, it can
be recovered from its integer samples. Here, the aim is to
exploit the fact that f(¢) belongs to a subspace of Vp and
sample it at a lower rate. The idea is to find an invertible
map from the sequences {ci,n} to a sequence of samples
of f(t). For this, let us sample f(t) at tx» = n27F + uy,
k=] -J+1...,—1, where u; € [0, 2"‘) Intuitively,
this rate should be enough since we can project f(t) onto
each of W.’s and then sample those projections at rates
2, In order to simplify the analysis that follows, let us
find some equivalent system where all the inputs/outputs
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operate at the same rate. For this, let

Cu(e™) =3 ceme ™" and Fu(e™)= ) fltmn)e™"

n

(2.8)
be the Fourier transforms of {ck,n} and {f(tm,n)}. In or-
der to bring all these signals to the same rate, we expand
Ci(e’“)’s and Fi(e’*)’s into their 27+%_fold polyphase com-
ponents

2tk
ACHENDY e g, (e
=0 N
and
21+k_1
F(@)= Y e (Y, T <k < -1
=0

(2.9)
Now that all the inputs and outputs are brought to the
same rate, our system can be represented as in Fig. 2.4.

C.1 .0(2) F-‘I,O (Z)
C.1.1(Z) - - F-1,1 (Z)
C.1 2% (2) — — F2* (2)
C 2d2) —_' F(z) __' Fo0(2)
C.J‘.1 "(Z) ""_'_'—' : F-J+1,1 (Z)
Cale) —— —— ()

Fig. 2.4. An interpretation of multiband sampling.

The entries of F(z) in Fig. 2.4. are functions of the
chosen MRA and sampling points. Detailed derivations can
be found in [6]. An MIMO version of the Wiener’s theorem
[7] gives us sufficient conditions for the existence of a stable
inversion scheme.

Theorem 2. If a function f(£) € Wi, + W_iy + -+ +
W_i; CO(1<i1 <i2<...<iJy)is sampled at the rate
2714272 4., 427 < 1, then there exists a stable recon-
struction scheme if F(e’*), as defined above, is nonsingular
for allw € [—m, 7]

Remark. Notice that if the projection of f(t) onto some of
Wiy's is zero, we can drop the corresponding term Ci(e’*)
and sample at an even lower rate.

In this case, there will be 27 — 1 functions Si(t) ob-
tained from F~!(z) and ®(w), and the synthesis functions
are Sx(t — 27n), for n € Z (see [6] for details). Those syn-
thesis functions form a Riesz basis as well.

2.4. Sampling of WSS random processes

The problem of sampling of random processes was thor-
oughly investigated by the end of 1960’s. Uniform and
nonuniform sampling of WSS and nonstationary bandlim-
ited random processes was considered (for an overview, see
[5]). In this section we want to look at the problem of uni-
form and nonuniform sampling of WSS random processes
related to wavelet subspaces.

Let ¢a(t) be the deterministic autocorrelation function
of ¢(t),i.e., ga(7) = f o(t+7)0* (t)dt. We keep assumptions

from Sec. 2, namely that {¢(t—n)} is a Riesz bases for Vo =

span{@(t — n)} and that ¢(t) satisfies Janssen’s conditions
from subsection 2.1. We will consider random processes
whose autocorrelation functions have the following form

Rys(t) =) cndalt—n),

n

(2.10)

where {c.} € I*. The PSD function has the following form
Sp1(w) = C(¢)2a(w),

where C(¢’“) > 0 and ®,(w) = |®(w)|?.
We will consider both uniform and nonuniform sampling.

(2.11)

Uniform sampling

Consider a random processes {f(t), —co < t < oo} with
autocorrelation functions Ryzz(t) of the form (2.10). The
discrete parameter autocorrelation function is

r7(m,n) = E[f(n+ m)f*(m)] = Rsp(n),

and therefore, {f(n)} is a discrete parameter WSS random
process. )

Let sss(e’) = Y., Sys(w + 2wn). Then the Fourier
coefficients of sss(e’) are integer samples of the autocor-
relation function rss(n) = Rys(n).

First, we show that the random process {f(t)} cannot
be reconstructed from the samples {f(n)}, if the synthesiz-
ing functions are restricted to be shifts of one function (un-
less, of course, the random process is bandlimited). In order
to show this, assume the contrary. Let there be a function
g(t) € L2(R) such that {f(t)} is equal to >, f(n)g(t —n)

in MS sense. The error random process

(2.12)

e(t) = f() =D _ f(n)g(t —n) (2.13)
has autocorrelation function
Re.(t,7) = E[e(t)e’(t — 1)]. (2.14)

It is easy to check that R..(t+1,7) = Re.(t, ), so the error
is a cyclo-WSS random process with period T' = 1. We can
average R..(t,) over T, to get the autocorrelation function
R..(7). Its variance 0? = R..(0) is

Rys(0)— / Ryy(t—n)g"(t=n)dt— / Ry (n—t)g(t—n)dt+

s R [ae-vgwa @)
[

Using Parseval’s identity, the above expressions can be sim-

plified to

51-;/5”(4.:) (l—G"(w)—G(w)+2k:|G(w+21rk)|2) dw

(2.16)

This cannot be zeroed for any choice of G(w) unless ¢(2) is
bandlimited.

Even though we cannot recover the random process in

MS sense, we can still recover the PSD function Sys(w). We
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know that rs;(n) = Rys(n) and that spp(e’*) = Y-, Spp(w+
2rk). Substituting the special form of Sss(w) into the last
formula, we get

spe(€) = C(e) Y |B(w + 2mk)[*. (2.17)
k

Since sss(e’) = > ris(n)e”7™“, we can recover C(e’*)

as follows .
2 rrs(n)e

Zk |®(w + 27k)|?"
Notice that the division is legal, because of the following
reason: {¢(t — n)} is assumed to form a Riesz basis for
its span. Therefore, there are constants 0 < A < B < o©
such that A < Y, [®(w + 27k)|* < B a.e., and the result
of the division is in L?*[—=,x]. Finally, the reconstructed
spectrum is

C(e™) = (2.18)

Y. ris(n)e” ™
Zk |®(w + 27k)|?

Spp(w) = |®(w))?. (2.19)

Remark. If {¢(t — n)} forms an orthonormal basis, then
3. 12(w+27k)|* = 1 a.e., and the above equation simplifies

to )
Spr@) =@ res(m)e™™.  (2.20)

Nonuniform sampling

It can be easily seen that a deterministic nonuniform
sampling of a random process produces a nonstationary dis-
crete parameter random process. In order to preserve sta-
tionarity, we introduce randomness into the sampling times
(i-e., jitter). These, so called stationary point random pro-
cesses, were investigated in [8]. One special case is when
the sampling times are ¢, = n + u,, where u, are indepen-
dent random variables with some distribution function p(u).
Let v(w) = Eu[e”’"“] be its characteristic function. The
autocorrelation sequence of the discrete parameter random

process {f(ta)} is
ris(m,n) = E, [E[f(tat+m ) (tm M = Eu[Rps(tmsn—tm)] =

= 51—/5ff(w)Eu[ej(“"+'"_“'")“]ej"ud‘*" (2.21)
™

Since u,’s are mutually independent, we have

ifn#0

Jtapme ~jumw] l‘/("")lz?
Eu[e € ] { 1, fn=0"

so that we finally get

2= S &) Sps(w)dw, i n#0;
rif(m,m) =
ifn=0.
(2.22)
Since rg¢(m, n) is independent of m, {f(t,)} is a WSS ran-
dom process and we will just leave out index m in (2.22).

= [ Spr(w)dw

Our PSD function has a special form Sy (w) = C(e7*)|®(w)]*.

and putting this in (2.22), we get

rism) = = [ P Nb0) s =

- 1 T jnw jw 2 2
= 27/_”3 c(e )zk:|'y(w+21rk)| |®(w + 27k)|2dw,

) (2.23)
for n # 0. First, we recover C(e’“) as in the case of uniform
sampling. Then the original PSD function is

i r(0)+ o rep(n)e” "
S11(0) = S T k)P [8(o + 27

|B(w), (2.24)

where r(0) can be found from (2.22) and (2.23).

In summary, given a WSS random process, its auto-
correlation function can be estimated using formulas (2.20)
and (2.24). If the autocorrelation function does not satisfy
condition (2.10), there will be some aliasing error.

4. CONCLUSION

We extended the sampling theory for MRA subspaces
to derivative and multiband sampling and sampling of WSS
random processes. Riesz basis property of the synthesizing
functions was established.
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