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ABSTRACT weight values and hence cancellation of ISI even for non-

High-speed communications sutfer from ISI introduced by the
channel. In order to combat ISI one commonly uses equalizers
that need a training sequence to adjust the equalizer tap
weights. When sending a training sequence is not appropriate,
blind equalization has to be used. In this paper, a new blind
linear equalizer is proposed.

The equalizer has a recursive structure. To avoid
stability problems, a soft limiter is used in the feedback loop.
The weights are controlled by means of the decorrelation
algorithm.

For channels without precursors, the equalizer
converges to the desired weignts in around 500 iterations,
depending on the amount of distortion. The novel blind
equalization technique is globaily convergent for minimum and
non-minimum phase channels.

1. INTRODUCTION

The problem of decision feedback equalizers with linear
feedforward sections was intensively researched by many
authors (1], {2]. [3]. The blind linear equalizer was also
considered using LMS algorithms to find the optimum of cost
functions which differ from one research to another {4}, [5], [6].
However, since these funcdons were non-convex, the
algorithms suffer from ill-convergence.

In recent work [7], (8], a blind decision feedback
equalizer based on decorreladon of the data samples at the
input of the slicer was proposed and studied. It was shown that
the algorithm converges to the optimum weights irrespective of
the initial conditions or error rate and hence, unlike other blind
equalizer algorithms, it is globally convergent.

In this paper, a lnear equalizer that uses the
decorrelation algorithm in conwolling the weights is studied. In
dealing with the customary communication ISI channel (moving
average) it was shown that if a FIR (transversal) filter is used,
this algorithm might face some difficulties that need to be
further researched to obtain successful equalization. However,
when a linear recursive structure is used, the algorithm led to
convergence of the weights to steady state value commensurate
with the channel impulse response. Similar to the decision
feedback equalizer it results in total illuminaton of ISI with no
additive noise. Clearly this smucture may have a stability
problem if the channel is non-minimum phase (contains zeros
outside the unit circle). However, simulations with a modified
structure, which we termed "linear recursive equalizer with soft
limiter," resulted in successtul convergence to the correct
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minimum phase channels.

The importance of the linear equalizer in companson
to the decision feedback equalizer is in the ability of the former
to cancel precursors in the channel response. Hence, a
combination of both controlled by the decorrelation algorithm
might give an important solution to the general blind
equalization problem without the drawbacks of ill-convergence.
The study of cancelling precursors with the blind recursive
equalizer is ongoing.

2. BLIND LINEAR RECURSIVE EQUALIZER

Fig. 1 depicts the system model with equalizer structure in
detail. The channel is modelled as an FIR filter with length N,
having the transfer function

HE@) =1+ bz bz by

Discarding the soft limiter, the equalizer output is given by

v N

A=Y, =Y wA_ =1 +YhI,_ ZWA,“ 1)

imi iwl im]

where, for mathematical convenience, the number of equalizer
taps is assumed to be equal to the number of channel taps. A
limited discrepancy in the number of taps will only slightly
degrade equalizer performance. In (1), /, are the data symbols,

assuming an i.d.d. random variable, 7, € {-11}. Rewriting the
equalizer output in matrix form, we get

A=l +T  h-AY L w 2)

where prime stands for transpose and
Ly =[1k- k=2veerdim N] A =[Ak—l'AL—2-""Ak-N]T-
ha[hl.h_,,..., ], W [wwyeewy ]
The equalizer weights are updated according to the
decorrelation algorithm {7], yielding
(k) _ )

w;

+uAkAk_,, i=l..., N

To derive the steady state of the equalizer, we multiply (2) by
A,_, and obtain, after averaging:

) AA =LA +A T, h=-A,_ AW 3
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The first term in (3) vanishes since the channel output does not
depend on the data symbols in the future:

Il:—mAk-n -O n>m (4)

Let the matrix B=A,_,I,_, . From (4), it is clear that B is an
upperside triangle matrix. Evaluation of the elements on the
main diagonal of B using (4) and the fact that the transmitted
data symbols are uncorrelated, yields

Apvendiom = Lopliom+ Loy eyt Ll vhy

[ VR e [ W, Y

=1, _I,_,=0ci=1 k2m
Hence we get
1 Alz—llk-2 Ay
B= 0 1 o Al (5)
0 0 1

The elements of B above the main diagonal can be written as
(n>m,k2n)

Avcdion = Ik-n{Ik-m e A By -

Apcmet W= =AWy }

Letting n=m+1 the following expression is obtained:

Ayt = Dot ety = Dot AWy —

R P W—

-
=h=w =Y L piBomiW, 121

iml

This expression is valid for every m provided n>m and
k >m+1, thus we can take m equal zero, resulting in

- I-1
AL =h-w -Z[k-tAk-iwi

i

Combining (3) and (5) yields for the correlation vector:

AA,_ =Bh-A AW (6)

3.STEADY STATE

In this paragraph, attention will be paid to the steady state
behaviour of the equalizer. This means, the behaviour of the
equalizer weights is analysed, assuming that they have
converged to the values that result in decorrelation of the

equalizer outputs, i.e., E{4, A, }=0,i=1..N . Here, k=N
must be larger than ¢,,, the time at which the steady state is
reached. Furthermore, if E{4, }= 0, the second moment of the

stochastic variable A, isfound as:
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E{A,A}=03 )]

where o is the varance of A, . The fact that E {Ak }= 0 can
be shown using

Xk- = Z+ [ b+ _ by —A', W= —A_,‘(w1 +...+wN)

Assuming w, +w,+...+wy *~1 then A, must be zero.

In steady state, when k=N >¢,,, it follows from (75
and from the fact that E{A, A, }=0,i=L.N, that

A,_A',_, in (6) is a diagonal matrix with ¢ on the main
diagonal. That is, with decorrelation we have
0= Bh-oﬁw (8)

To get an expression for the variance, we combine (2) and (7):

o= (l, + L b= A w)l, +T,_h- A, w)

=11 +2-1T,_h~2-LA,_w-2-T_hA,_w (9)

+L_hl_h+A,_ WA, w
In the appendix we show that (8) is equivalent to
o} =[1-ww| [1-2wBh+hi] (10)
Now one can easily show that the ISI is zero if and only if

w=h. It could also be shown that if o; =1 and w=h then

the output of the equalizer is decorrelated. However it is
difficult to show, due to the non-linear property of (8), that in
the general case decorrelation leads to w=h and hence zero
ISI. However, a few examples presented in next section lead us
to conclude that the answer to the question is positive.

4. EXAMPLES

To elucidate the problem, the equalizer weights will be
calculated for N =2 . The equations obtained will be combined
with (10) for the variance. This will result in possible solutions
for the equalizer weights in steady state.

For N =2, and assuming the equalizer is in steady
state, i.e., the equalizer outputs are decorrelated, we have:

AA | 0

Ak Ak—2 0
It then follows from the general expression for the correlation
vector (6) that

(k)
©ooi+h
Evaluating the expression for the variance yields
Lyl . _— .
cli= (l— w w) (1—2{hw +h2w11k-2Ak-l}+ hh)

(1-2w, = 20w, = 2Rty w, + 2w + 2+ 1)

2_ 2
1-wi—w;

Ly (11

2
A

]

2

Q

(12)




To get more insight in the solutions of ¢, w, and w, for

different channels, Eqs. (11) and (12) are solved for three
numerical examples:

1. Hy(z)=1+05z""+03z"> minimum phase, h"h<1;
2. Hy(z) =1+09z"' +07z minimum phase, hh>I;

3. H3(z) = 1+09z™"' = 0.7z non-minimum phase.

The corresponding solutions, generated by “Mathematica,” can
be found in Tables 1, 2 and 3. Complex solutions are not
depicted.

ol W Wy o’ W W,
0.09 | 167 |333 049 [129 |143
1 0.5 0.3 1 0.9 0.7

Table 2. Solutions for
ex.2: i =09, h =07

Table 1. Solutions for
ex.l: b =051, =03

2 W, W.
ca 1 2

0.25 -0.6 2.8
0.49 -1.29 -1.43
1 0.9 -0.7
1.96 0.21 -0.35

Table 3. Solutions for ex. 3: i, =09, h, =07

In examples 1 and 2, in which the channel is minimum phase,
we observe that the equalizer weights corresponding to unit
variance are the correct ones, i.e., for unit variance the ISI is
cancelled exactly. Since the channel is minimum phase, the
poles of the recursive equalizer with correct weights are inside
the unit circle, hence the equalizer is stable.

With respect to example 3, we observe that the first
solutions in Table 3 result in an equalizer with poles outside the
unit circle, i.e., the equalizer is unstable. Only one set of
weights, the set corresponding to the largest variance, forces the
poles of the equalizer to be inside the unit circle, yielding a
stable equalizer. However, these weights do not yield zero ISI
since w#h. In fact, simulations show that the equalizer
converges to the ‘stable’ weights, i.e., no ISI cancellation.

To avoid instability of the equalizer, a soft limiter is
implemented in the feedback loop, as depicted in Fig. 1. The
soft limiter performs the following operation:

for |In| < 1

In
Out = (13
¥l forln<-1,In>1

where In and Out are the limiter input and limiter output,
respectively. Clearly, the soft limiter has a slope of 45°.

Due to the limiter, the equalizer can operate in two
different modes. The first mode of operation is when |/n/ <1, in

which the limited equalizer simplifies to the regular recursive
equalizer. In the second mode, i.e., when |In|>1, the limiter
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slices the input, or, in other words, it acts as a decision device,
and hence it behaves as a decision feedback equalizer [7] in this
case.

Simulations with this scheme show that the recursive
equalizer with a soft limiter converges to the correct weights,
irrespective of whether the channel is minimum or non-
minimum phase.

5. SIMULATIONS

In this paragraph, learning curves and admissibility plots [9] of
the equalizer will be shown. The figures show the tap weights
obtained by taking the Monte Carlo average of 200
experiments. The step size p equals 0.01; the channel is
assumed to be noiseless.

Fig. 2 depicts the learning curves for the blind linear
recursive equalizer (BLE) without a limiter, compared with the
decorrelation decision feedback equalizer (DFE) for a channel
according to example 1. We observe that the convergence speed
is approximately equal for both equalizers. In Fig. 3 the
learning curves for the BLE with and without a limiter are
presented. There is a slight increase in convergence speed when
adding the limiter.

Fig. 4 shows the learning curves for the BLE with a
soft limiter and the DFE for a channel according to example 3.
One can observe that the BLE converges rather slow in this
case.

In Fig. 5 and 6 the admissibility plots for the first and
third example, respectively, are presented. From these plots one
can conclude that the blind linear recursive equalizer is globally
convergent.

6. CONCLUSIONS

In this paper we examined the behaviour of a blind equalizer,
having a recursive structure and being controlled by the
decorrelation algorithm. It was shown that stability problems
can be avoided by implementing a soft limiter in the equalizer’s
feedback loop.

Steady state solutions were obtained mathematically.
Due to some analysis difficulties, sufficient proof is still being
researched. Nevertheless, many simulations show positive
results, The convergence speed of the recursive equalizer is
slightly lower than that of the decorrelation DFE. However,
when the channel is heavily distorted, the decrease in
convergence speed becomes significant.

The recursive equalizer with soft limiter converges to
the correct weights, regardless of the initial settings.
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Fig. 1 Recursive equalizer with sof't limiter
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Fig. 5 Admissibility curve for BLE without limiter, 4,(z) channel

APPENDIX

We will evaluate the terms in this equation to derive a simpler
form. The first term in this expression clearly equals one. Since
we have uncorrelated data symbols, the second term vanishes.
The equalizer outputs A, , do not depend on future data

symbols, (4), so the third terms vanishes too. Skipping the
fourth term for this very moment, the fifth term can be reduced:

L bl h=[nl_+. 4y, g+ 4k, y]=1n
In the same way, the last term of (9) simplifies to
A, WA, W=0iww

Evaluation of the fourth term in (9) results in:

I, hA, w=1_hwA, = uace(Ak_ll;_lhw')
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Fig. 2 Learning curve for the BLE and DFE, H,(z) channel
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Fig. 6 Admissibility curve for BLE with limiter, H,(z) channel
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