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ABSTRACT

Using a small number of coefficients in Haar-wavelet-
based models we can efficiently identify echo paths
which have certain typical impulse response shapes.
The obtained energy of modeling error is low (less than
2%). A simple wavelet-based LMS adaptive filter can
be used for on-line estimation of coefficients. A low
number of time-consuming computations is obtained
per input sample due to the usage of Haar wavelets.
This number is less than the ones obtained by FIR or
DFT domain based modeling.

1. INTRODUCTION

Long-distance telephone communications of good qual-
ity require absence of echos. Examples of typical im-
pulse responses of the echo path of four-to-two wire
hybrid in a long-distance telephone system are given in
Figures 1 and 2. We can notice that the impulse re-
sponses have a long tail. Also, they change fast at the
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Figure 1: Impulse response of an echo path

beginning and slow at the end. Physical characteristics
of an echo path are time varying and the impulse re-
sponses measured at different times can differ from each
other. This means that an echo canceller must track
the changes. If we can have a good representation of
the impulse responses by a small number of coefficients
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Figure 2: Impulse response of the same echo path as in
Fig. 1 but measured at a different time

multiplying some known functions and if the computa-
tion of the coefficients is not time consuming, we can
expect fast adaptation and tracking in on-line identi-
fication of echo paths. The FIR model of the impulse
responses [1] will require many significant coefficients
for a small modeling error, especially with fast sam-
pling. A good IIR model will also require many poles
and zeros. The slow decay of the impulse responses
is not appropriate for modeling by functions with an
exponential decay, for one will need poles or multiple
poles close to the unit circle. This shifts the problem
to the convergence of adaptive IIR algorithms. We can
experience a lack of convergence or a very slow one.
Another approach that is usually resorted to is to try
modeling in the DFT-domain [2]. Much computational
savings are achieved at the expense of somewhat slower
convergence due to less frequent updating. In this pa-
per we propose modeling by wavelets which is supposed
to give economical bases for signals composed of short
and long components of similar shapes. It will be shown
that our approach has the advantages of few adaptive
coefficients, thus low computational complexity, with a
convergence speed that is at least as good as that of the
FIR LMS algorithm.

2. HAAR-WAVELET-BASED APPROACH

For on-line identification of echo-path impulse res-
ponses a wavelet-based adaptive filter is used. A theo-
retical setting for the filter is given in {3]-[5]. A ma-
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Figure 3: Haar-wavelet coefficients of the impulse
response in Fig. 1
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Figure 4: Haar-wavelet coeflicients of the impulse
response in Fig. 2

jor issue in such modeling is the choice of wavelets.
They can have different shapes (e.g., symmetric, anti-
symmetric, asymmetric, oscillatory), lengths and inter-
relationships (e.g., orthogonal, semi-orthogonal, non-
orthogonal). In this application we have tried different
kinds of wavelets such as Daubechies’ orthogonal [6]
and some non-orthogonal (biorthogonal) ones [7]. For
the class of impulse responses we are considering and
with the objective that the energy of modeling error
being less than 2%, the smallest number of coefficients
for representation is obtained using Haar wavelets.

The Haar wavelets are discrete-time orthonormal se-
quences ¥mq(t), defined by

wmn(t) = me(t - an)y (1)
and
27%, for0<t<2m"1—1;
Ymo(t) =4 =2%, for2m-1<t<2m~1; (2)
0, otherwise.

The indices m and n correspond to the scale and trans-
lation respectively. Here m is a natural number and n

is an integer. Let h(t) be the impulse response of some
discrete-time linear time-invariant system, then we can

write
h(t) = Z GmnYmn (t)r (3)

(m,n)ED

where t,,(t) belongs to a set D of discrete-time
wavelets, e.g., the Haar wavelets given by (1) and (2).
The LMS algorithm is used for the adaptation of filter
coefficients any,, i.e.,

amn(t + 1) = @mn(t) + prma(t)e(?), 4)

where u is the adaptation gain, e(t) the error between
the desired signal and adaptive filter output

)= Y. rma()ima(), (5)

(mn)eD

and rma(t) the convolution of the input signal u(t) and
wavelet ¥, (t)

rmn(®) =D Yma(t — Du(l). (6)
1

The index set D satisfies D C D, i.e., for practical pur-
pose “reduced order” modeling is considered. The de-
sired signal is the output of an echo-path “unknown
system” and it can be expressed using (3) as

¥t)= D rmn()ama(t). (7)

(m,n)eD

The inputs of the unknown system and adaptive filter
are the same (the system identification configuration).
They are white noise having Gaussian or bipolar (£1)
distribution. Selection of the set of Haar wavelets which
will be used in the adaptive filter, i.e. the specification

of D, is made based on a set of measured impulse re-
sponses. The wavelet coefficients a,,, of the impulse
responses in Figures 1 and 2 are shown in Figures 3 and
4. Note that we have mapped the two-index pair (m, n)
to one index (let us denote it by 7) in order to draw the
coefficient values. More precisely, vectors of wavelet co-
efficients for different scales are mutually concatenated.
Assume that the scale parameter m goes from 1 to M,
then we can write

i=9M+l _oM+2-m +n, (8)

where
0<n<oM+i-m _q (9)

The last two indices i = 2M+1 — 2 and i = 2M+! _ |
are reserved for coefficients of the scaling functions
éar0(t) and ¢ari(t). The scaling functions are not
explicitly given in (3) since they can be represented
through wavelets at scales m > M. Note that ¢ro(t)
is a rectangle having the height 2= % and defined for
t =0,1,---,2M-1 The scaling function ¢as;(t) is
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Figure 5: Number of the largest coefficients and
corresponding energy
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Figure 6: Learning curve for Haar-wavelet-based LMS
adaptive filter in identifying
echo path of Fig. 1

éo(t) translated by 2M. The total number of the
wavelet and scaling-function coefficients is 2 +1. It can
be seen from Figures 3 and 4 that these are sparse rep-
resentations, i.e. only a small number of coefficients is
significantly different from zero. It is also seen that the
coefficient sets for the two models heavily overlap. We
have chosen for representation the largest coefficients
representing 98% of the impulse response energy. The
number of the largest coefficients and the correspond-
ing energy of representation for the impulse response
in Figure 1 is given in Figure 5. It is seen that only
about 30 or so coefficients are needed for 98% energy
representation. The energy plot for the model in Fig-
ure 2 is similar to Figure 5, requiring even fewer coeffi-
cients. The final D is obtained by taking the union of
the coefficients for different known (measured) impulse
responses.

Discrete-Time
Figure 7: Haar-wavelet-estimated impulse response of
echo path in Fig. 1

3. RESULTS

It appears that the total number of representation se-
quences Ymn(t) and ¢arn(t) is 35 and that we have to
use nine different scales, 1.e. 1 < m < 9. The adap-
tation gain of the LMS algorithm is chosen such that
the convergence occurs and the misadjustment is small
enough that we can estimate the modeling mean square
error from constant part of the learning curve, e.g. the
one in Figure 6. For the same modeling error an FIR
adaptive filter would need about 350 coefficients. That
is, the Haar-wavelet-based adaptive filter needs much
fewer coefficients and consequently it saves computa-
tion and can also converge faster. A comparison with
the DFT based approaches is not straightforward, due
to their block processing nature. Nevertheless, from
Table 2 of [2] some DFT based algorithms take about
one tenth of the computations of the LMS algorithm,
similar to our results. However, our algorithm is be-
ing updated at every sample, not once per block as
the DFT based algorithms, and hence we do not sacri-
fice the convergence speed. In fact, wavelet-based LMS
adaptive filters generally have even faster convergence
than the FIR LMS algorithm. See [4] for details.

The Haar-wavelet-estimated impulse response of the
echo-path in Figure 1 is shown in Figure 7. The stair-
case nature of the approximation can be easily seen.
This introduces a low-energy high-frequency content
which is not present in the original impulse response.
Our approach results in a small energy of modeling er-
ror but an open question is whether this error is percep-
tually acceptable. Low errors of some other types (fre-
quency selective, L;-norm, etc.) may be more appropri-
ate. An easy way to suppress effects of the small high-
frequency content is to apply low-pass filtering to the
output of the adaptive filter. The filtered output can
be used to cancel the echo. The low-pass filter should
have characteristics satisfying perceptual requirements.
The low-pass filter that already exists at the D/A con-
verter of the echo canceller may well serve the purpose.
Simulations show that changes in the input signal dis-
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Figure 8: Haar-wavelet convolver

L [ x [ * ]
Convolver M 2M
Adap. filter C C-1

output 1
LMS update C C
Total M+2C | 2M+2C
IJM+4C

Table 1: Number of multiplications and additions/
subtractions per iteration

tribution type (Gaussian or bipolar) does note affect
significantly the results of identification.

Since we are using the Haar wavelets, the imple-
mentation of the convolution (6) needs only a mini-
mal number of multiplications, which can be attrac-
tive from a computational point of view. In Figure
8 we can see nine stages of a Haar-wavelet convolver
where each stage consists of shift registers, two addi-
tions/subtractions, and one multiplication. The multi-
plication provides the energy normalization for wavelets
used in the convolutions. Each stage corresponds to one
scale m and the shift registers within one stage corre-
spond to the translation parameter n. The outputs of
the convolver are denoted using one index which takes
values from 1 to 35. The convolution between the in-
put signal u(t) and the scaling function ¢ (%) is given
by the output r35(¢t). The number of multiplications
and additions/subtractions is given in Table 1, where
M is the number of scales used and C the number of
coefficients. Since typically M and C are small (in our
example M = 9 and C = 35), the total number of com-
putations is much less than that in the FIR modeling
and less than that in the DFT domain modeling [2].

The (relatively) fast convergence of the wavelet-based
adaptive filters makes them suitable for tracking time-
varying echo paths. As long as D is chosen appropri-
ately, the LMS algorithm presented in this paper can be
used for tracking slowly time-varying echo paths with

# a trade-off factor between the tracking speed and the
residual mean square error. For fast time-varying echo
paths, the approach of [8] can be used in a similar fash-
ion following the development of this paper.
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