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ABSTRACT

Adaptive filters have been traditionally developed in a
digital environment which involves large number of
computations to get the coefficients that make the desired
approximation. Most of the time, this calculations
required a great capacity machines and that is not
practical for some applications like channel equalization
in cellular systems. This paper proposes a continuos-time
adaptive filter which is based on representing the impulse
response of adaptive filter as a linear combination of a
set of orthogonal exponentials. An important practical
advantage of it is that if a satisfactory representation can
be obtained by exponentials and simple filter structures
can be synthesized.

1. INTRODUCTION

Adaptive filters have been used in many practical
systems, as echo and noise cancelers, equalizers and
predictors, etc. Such signal processing applications have
relied on adaptive digital filters. That is because, with the
advance of digital technology, the digital signal
processors (DSP) became more powerful allowing
implementation of more efficient adaptive digital
algorithms. However, in most real time applications the
signal bandwidth must be kept within the audio range, or
systems with several DSPs operating in parallel or master
slave configuration must be used, because of processing
speed limitations.

Another important problem is the convergence rate for
tracking variations on the statistics of input and reference
signals. It is well known that algorithms with relatively
high computational complexity (RLS) have very fast
initial convergence, while the algorithms with low
computational complexity (LMS) bave a slower
convergence rates. Because the convergence rate and
computational complexity are very important issues in
most adaptive filter applications, great efforts have been
carried out for reduce computational complexity of
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adaptive filters, and improved their convergence and
tracking ability. However even if the characteristics of
the adaptive filters algorithms are greatly improved, it
is very difficult to achieved very high processing speed
(sampling rates on the order of several mega hertz) due
to technological limitations. These problems suggest the
necessity of development of reliable continuous time
adaptive filter structures for applications in which the
bandwidth of input and reference signals is very wide
(several hundred of kilohertz) [1}, or for application
which require very fast inttial convergence and
tracking, such a channel equalization of cellular
telephones, because continuous time adaptive filters
would be able to provide extremely fast convergence
rates and smaller size than digital adaptive filters.

In following sections it will show an analog adaptive
filter structure that improve time convergence of
conventional relizations usinga continuos time LMS
algorithm to reduce the error between the reference
system and the adaptive filter.

2. PROPOSED STRUCTURE.

Orthogonal polynomials such as Laguerre, Legendre,
Hermite and Chebyshev, have been widely used in the
derivation of several system identification algorithms,
most of them involving matrix operations. However,
since proposed adaptive filter structure is intented to be
used when large order adaptive filters are requiered and
is to be implemented in a continuos-time way, the
based of functions and the approach used to generate it,
most lead into a simple structure and easy
implementations. A suitable set is the Laguerre
orthogonal functions, due to the fact that, by using a
simple change of variables, they can be rewritten as a
set of orthogonal exponentials. An important practical
advantage is that if a satisfactory representation can be
obtained by exponentials, simple filter structures can be
synthesized.
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The modified Laguerre functions, orthogonal on the N

interval [0,0), are the result of the orthogonalization of t (6)
e(®) = d@ - T A t-t) dt

the function €™ in the interval [0,). [1]. ® ® f -"x( ) ,,‘.‘:; n Pt=7)

By using the method of orthogonalization in frecuency
domain proposed by Lee [1], it is found that the

. . N 7
modified Laguerre functions can be generated as the e = di) - A [ xtz t-1) dt (
impulse response of a network with transfer function @ ® ,; "'f _“x( ) Palt=T)
given by

Po--LTH G . 8
MO 5ea (O] e = d@) - mz;lAm u(t) ®
where
@ where
Hs) = s-a ) .
s+a u(@) = f x(t) p(-<) dv ©9)

and @ 1is a positive constant selected such that the
multiple pole be larger than the higher frecuency on the
transfer function of the system to be identified.

denotes de output signal of a system with impulse
response p,(t) and input signal x(t).

Equation (8) represents output error of a finite impulse
response (FIR) system. Then almost any FIR type
adaptive algorithm may be used. Because the signals
u(t) are continuos, a suitable choice could be the
continuos time LMS algorithm given by

It can be probed that since modified Laguerre functions
form a complete set of orthogonal functions on the
interval [0,00) the impulse response of any causal systems
can be represented, approximately, by the first N terms
of a convergent Laguerre series expansion given by

al 3) A, =p [ er) ur) dr (10)
h@) = 3 A, 2x0) Sy
m=1
where p is a factor that controls stability and
convergence rate. Equations (1), (8) and (10) lead to the

where A are the coefficients expansion chosen such that : .
proposed adaptive filter structure shown in figure # 1.

the mean square value of approximation error is kept to
a minimum.

-To derive the algorithm for on-line estimation of the
expansion coefficients, consider a causal linear system x(t)
with impulse response h(t) and input signal x(t). If y(t)
denotes the output signal of h(t) and d(t) is the desired I B e B O o O
response, then the output error will be given by £re L i _r_ e

e(t) = d@®) - Y1) @

dt)

6

e®) = di) - [ x(v) h-) dr

Thus, sustituting (3) into (5) it follows that
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2.1. Convergence of the continuos time LMS algorithm.

Consider the continuos time LMS algorithm given by

A = -p f;; V(t) dt (11)

where

Y (0=-2e(x) u,® (12)

and

N 13)
e) = di) - T A0 u,®
m=1

fork=1,2,..,N.
Using matrix notations, equations (11) to (13) can be

rewritten as

AQ) = -uf' W) e a9

where

15
Vo) =-2d) U@m+2 U@ U™ A@ (19

Taking the expectation of (14), (15) asuming that the
weights are uncorrelated with the input signal it follows
that

t 16
BAQ) =-uf Vo &

where
(17)
V(®=-2E[d@U @]+ 2E[Ll @)Ll 7@)] E[A@]

Taking the derivated of (16) respect to t we obtain

Edz E[A®)] = -uV() (18)

d ) (19)
2 EIAQ)] = 24P -2uR E[AQ)]

4 Biaw) - 2uR EAG]-20P @

It can be shown that the solution of (20) is

@1
E[A®)] = R'P +¢ ¥ (W(0)-R'P)

Sustracting R P in both sides of (21) and taking the
limit

(22)
E[AQ®)] - R'P = ¢ ¥ (VWW(0)-R'P)

when t goes to infinite it follows that

l‘ifll EAY] - R'P) = 2
lim (e **™ (VV(0)-R™'F)) =

lim B[A®] - R7'P) = 0 (24)

t~o0

Thus as t — oo, B[A(f)] approaches the optimal Wiener
solution. From (23), it follows that the convergence
factor p can be set arbitrarily large but greater than
Zero.

2.2 Analog structure.
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Figure # 2 shows the analog LMS algorithm structure
with the delay line formed in concordance with Laguerre
functions, working as a identification configuration.

Signal x(t) is feeded into delay line and into the h(t)
block which is the block that wants to be identified. The
desired signal d(t) is given by the convolution between
X(t) and h(t). This signal is feeded into a difference
circuit in order to produce the error signal like equation
(13). For the figure # 2, signal Y(t) is given by

" (25)
H0==§:5%
n=0
where the output currents are given by:
iw,. = ¢, X0 (26)

The coefficients ¢, are calculated by the circuit formed
by the two multiplying circuits and the integrator, which
conform the analog LMS algorithm. The signal error e(t)
is passed to the first multiplying and is multiplied with
the corresponding signal x,(t), then, this product is
integrated yielding the coefficient ¢, The factor 2 is
related with the RC parameters of the integrator circuit.
The coefficient ¢, is then multiplied with the signal x,(t)
yielding the output current that is passed to the add
circuits to produce the output signal Y(t) of the
transversal filter.

3. RESULTS

The results that are showed in this paper was obtained by
computational simulations (PSPICE simulations) using
some VLSI structures to implement the proposed
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adaptive filter. Figure # 3 show a transfer functon
approximated by the propose configuration in which it
can observed that the working range is between 10mHz
to 1 MHz. This simulation was generated with 3
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Figure # 4

coefficients. Figure # 4 shows the corresponding error
function.

4. CONCLUSIONS.

This paper shows the implementation of an analog
adaptive filter. Proposed structure was obtained by
using a set of orthogonal functions. This realization
leads into a filter structure which consists of a low pass
function and N-1 all pass functions. The adaptation is
perform by using the analog LMS algorithm. Spice
simulations shows the feasibility of the proposed model
and as the figure # 3 shows that the output signal Y(t)
identify the system. Figure # 4 shows that the
convergence time is very fast and this suggest
applications in which the statistics of the signal to be
identified change in time with high speeds. Future work
suggest to implement on VLSI structures in order to
improve the operating frequency of the circuits to reach
higher frequencies.
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