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ABSTRACT

When a message signal is transmitted through a linear
dispersive system, the system output may contain se-
vere intersymbol interference (ISI). The removal of the
ISI without the aid of training signals is referred to as
blind equalization.

We present a new algorithm that achieves blind
equalization of possibly nonminimum phase channels,
based only on the second-order statistics of the source
symbols. Source symbols may have an arbitrary dis-
tribution; specifically, they do not have to be indepen-
dently identically distributed (i.i.d.). This is an exten-
sion to previous work done by Tong, Xu and Kailath
(1].

Simulations show that the new algorithm compares
favorably to the algorithm given in [1].

1. Introduction

In digital communication over linear dispersive sys-
tems, intersymbol interference is considered to be the
primary source of signal distortion, not additive noise
[2]. Conventional equalizers make use of a training pe-
riod, during which the desired signal is known at the
receiving end. There are however cases, where send-
ing a training signal does not seem feasible or where
channel characteristics may abruptly change, thereby
requiring renewed equalizer adjustment. Therefore, it
would be desirable if the equalizer could adapt itself to
the channel blindly, without a desired response.

Consider digital radio systems as an example. The
time-varying multipath propagation inherent in wire-
less communication systems, can produce severe chan-
nel fading which may lead to system outage. If this oc-
curs during the training process, the adaptive equalizer
will not converge since the desired response is missing.
In this situation a blind equalizer would be required
because it does not rely on knowledge about the exact
training signal or on a predefined channel model.

A multiplicity of additional applications are dis-
cussed by various authors in [3]. This reference gives
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Figure 1: Model of a Communication System

also an excellent summary of several important meth-
ods of blind equalization.

1.1. Motivation for this work

The problem of blind equalization has now been studied
for nearly twenty years. A variety of algorithms have
been developed. Most of them, however, are built on
the conception that higher-order statistics are needed
for identifying nonminimum phase transfer functions.
Many of these algorithms have problematic convergence
properties due to local minima in the nonconvex cost
functions, upon which typically a gradient descent algo-
rithm operates. It has been shown recently that higher-
order statistics may not be required for the identifi-
cation of nonminimum phase systems if the input to
the system is non-stationary [4]. Tong et al. were the
first to use this property in a true blind equalization
algorithm without training signal. However, all the
available literature, including [1], considers only sys-
tem inputs which are independently and identically dis-
tributed (i.i.d.). This excludes important source mod-
els such as Markov sources.

In this paper we describe a new blind equalization
algorithm based on second-order statistics for systems
driven by a non-stationary and not memoryless com-
munication source, i.e. symbols are correlated and not
1id. .

In Section 2 we set up the mathematical formula-
tion of the blind equalization problem. Section 3 gives
an outline of the proposed new algorithm. Results of
simulations are presented in Section 4 and conclusions
are drawn in Section 5.
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2. Background

Let the channel in Figure 1 be a linear time-invariant
system. Then the system output z(n) is given by the
linear convolution of the source sequence s(n) with the
sampled channel impulse response h(n)

z(n) = h(n)xs(n) = »_ h(k)s(n—k). (1)

k=—00

The discrete impulse response h(n) includes pulse-sha-
ping filter, dispersive channel and receiver filters. Our
objective is to transform (1) into vector-matrix form. If
h(n) is assumed to have finite support, evidently only a
finite number of source symbols s(z) will have an effect
on each output symbol z(j). Thus, if we define a vector
of output symbols, it can be computed as the product of
some matrix H (a channel convolution matrix) with a
corresponding finite length vector s(n). If the received
signal is sampled at a rate higher than the baud rate,
it can be shown (for example [5]) that a model

x(n) =Hs(n) n=0,1,2,... (2)

can be used to describe the system, where H is con-
stant but vectors x(n) and s(n) are windowed segments
of the output and input sequences respectively. The di-
mensions of matrix H depend on the length L of the
impulse response, the rate of oversampling a, and the
length of the observation window. There are m = ra
rows and d = L + r — 1 columns, where r is an integer
chosen to ensure m > d. Calculating the autocorrela-
tion of x we obtain

R.(k) = HR,(k)HY k=0,1,2,... .  (3)

()T denotes matrix-transpose and k indicates a time-
lag.

The {R.(k) : k= 0,1,...} are the autocorrelation
matrices of the received sequence and can be estimated
using standard methods. Each R, (k) is an autocorrela-
tion matrix of the source sequence and is assumed to be
known (in all blind equalization techniques knowledge
of source statistics is assumed).

The problem of blind equalization now corresponds
to identifying H from the system of equations (3), and
then inverting the channel. The latter step is per-
formed by standard least-squares or maximum-likeli-
hood estimation. Tong et al. {1] have solved the prob-
lem of identifying H under the constraint that s(k) is
an i.i.d. sequence, which implies a very specific struc-
ture for R,(k). The new algorithm of Section 3 works
for arbitrary source statistics, but utilizes more of the
equations (3).

3. The New Algorithm

Consider the first equation in the system of equations
of (3). At lag k = 0 both autocorrelation matrices are
symmetric and positive semi-definite. Replace R;(0)
by its eigenvalue decomposition, R;(0) = UAUT, and
R, (0) by its Cholesky factorization, R,(0) = LLT. Us-
ing these factorizations and performing a matrix
square root operation on both sides we can solve for
the channel convolution matrix

H = U;AY QL1 S 4)

()}/2 denotes the matrix square root, and ()~* the ma-
trix inverse. In equation (4) Ug contains the first d
columns of U and A4 is a diagonal matrix of the d
most significant eigenvalues; the only unknown factor
remaining is the d x d unitary matrix Q, which is an
ambiguity arising from the matrix square root opera-
tion.

The ambiguity in Q can be resolved from the next
d — 1 equations in (3). Substituting (4) for H and
simplifying gives

R:=QA:Q7 k=1,...,d-1, (5)
where

R = A;Y?UTR.(k)U.A;T/?, (6)
Ay = L'R,KLT k=1,....d=1. (7)

()¥ denotes the conjugate transpose of the matrix.
The matrices {Rr} and {A;} are available at the
receiver. Let xi,y: be the singular vectors correspond-
ing to the smallest singular values (o;) of Ry and Ay
respectively. Multiplying (5) by xi yields

Rixp = QAkQka =opu; k=1,...,d-1. (8)

uy-is the corresponding left singular vector, and not of
particular interest here. Since Q is unitary it can be
shown that

Qfxy=xyr k=1,...,d—1. 9)

The set of equations in (9) together with the constraint
that Q has to be unitary are sufficient to identify a set
of 24 possible matrices. For practical reasons, the sign
ambiguity in (9) (which leads to this set of matrices) is
best resolved by an exhaustive search. The identifica-
tion of Q is improved if the singular vectors xi,yx are
found as those corresponding to the smallest singular
values of [R{,xl,...,xk._l]T and [A{,yl, oo V-1,
respectively. In this way the set of vectors x; and yi
are mutually orthogonal.
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Figure 2: (a) Channel Impulse Response, (b) Unequalized Received Sequence, (c) Test 1: New Algorithm, (d) Test
1: TXK Algorithm, (e) Test 1: Combined Channel-Equalizer Response, (f) Test 2: New Algorithm, (g) Test 2:
TXK Algorithm, (h) Test 2: Combined Channel-Equalizer Response.

Now that the channel is identified in terms of its
channel convolution matrix, the sequence estimation
can be performed. The least-squares approach, for ex-
ample, gives

szs(n) = Hix(n) (10)
= LQHA;Y*UTx(n) n=0,1,... (11)

H' is the pseudo-inverse of the channel convolution
matrix.

4., Simulations

Preliminary tests were performed to compare the new
algorithm to the algorithm of Tong, Xu and Kailath
[1]. We refer to their original algorithm as TXK. For
the non-i.i.d. case we modify the TXK algorithm by
including the inverse of an imaginary whitening filter
in the channel convolution matrix H; this algorithm is
referred to as modified TXK. There are two test cases.

Markov Source

1000 data points are generated by a first-order markov
process. The points are drawn from a 4-QAM con-
stellation. To obtain the received sequence, the data is
convolved with the sampled impulse response of Figure
2a, and low-power white noise is added to the result at a
signal-to-noise ratio of ca. 25 dB. The channel impulse

response (adapted from [1]) is generated from three de-
layed raised cosine pulses and has nonminimum phase.
As can be seen from Figure 2b, the unequalized received
sequence suffers from severe ISI and does not allow re-
liable decisions. The received sequence is then equal-
ized by each algorithm. The outputs, Figures 2c and
2d, are obtained after estimating the channel convolu-
tion matrix using 400 points of the received sequence,
and calculating the least-squares estimates with (11).
It can be seen that the new algorithm by far outper-
forms modified TXK. The improved performance is also
evident in Figure 2e. Ideally, the combined response
of the channel-equalizer cascade should show only one
non-zero element. The new algorithm comes closer to
this ideal than modified TXK. The output signal-to-
interference-and-noise ratio, defined by

Icmaz"2

12
Zn lcn|2 - |Cmax‘2 (12)
is 50 dB for the new algorithm and only 12.7 dB for
TXK. In equation (12) the ¢; are the coefficients of the
combined response of channel and equalizer

SINR =

IID Source

In the second test, data are drawn uniformly and in-
dependently from a 16-QAM constellation. Using the
same channel as before and 400 elements of the re-
ceived sequence in the estimation, the equalized out-
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puts for both algorithms are shown in Figures 2f and 2g.
From these plots and again from the combined channel-
equalizer response in Figure 2h, one can see that the
new algorithm is more accurate (numerically stable)
even on i.i.d. source sequences. The output SINRs are
43.6 dB and 16.4 dB for the new algorithm and the
TXK algorithm, respectively.

5. Conclusions

We have proposed a novel method of Blind Equaliza-
tion. The method, based on previous work by Tong et
al. [1], identifies nonminimum phase channels driven
by (possibly) non-i.i.d. source sequences, using second-
order statistics only. This method has many advan-
tages over existing higher-order statistics based approa-
ches. There are no convergence problems due to lo-
cal minima and fewer samples are required to estimate
second-order statistics. The new algorithm identifies
channels asymptotically exactly without putting any
restrictions on the source statistics. At the cost of
slightly higher computational complexity, the new al-
gorithm is more numerically stable than that proposed
in [1].
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