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ABSTRACT

Three constant modulus algorithms (CMA), the fast
quasi-Newton CMA, the transform domain CMA, and
the genetic search based CMA are proposed in this pa-
per. The performances of these three algorithms are
compared with each other via computer simulation. It is
shown that the fast quasi-Newton CMA and the trans-
form domain CMA achieve much faster convergence
rate than the constant modulus algorithm based on the
LMS algorithm. This fact shows that the whitening
technique is not only useful but also necessary for the
CMA.

1. INTRODUCTION

Adaptive equalizers are widely used in communica-
tion systems to remove distortion such as intersymbol
interference and multipath reflection introduced through
transmission. Conventional adaptive algorithms use a
training sequence to adapt the equalizer. The training
signal is known to the receiver and transmitted during
the start up period. However, in many cases, the use of
a training signal is costly and unrealistic. Blind equal-
ization schemes do not require the use of a training
signal but instead adapt the equalizer based on restor-
ing a known property of the transmitted signal. The
constant modulus algorithm (CMA) [3] is one of the
blind equalization algorithms [2] which attempts to re-
store the modulus of certain communication signals (eg.
BPSK, QPSK).

The cost function of the blind equalization algo-
rithms is:

J = Elly(m)? - 1817, (1)
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where y(n) is the equalizer output, § is the expected
modulus, and p and ¢ are positive integers. The gen-
eral blind equalization algorithms for arbitrary p’s and
q's were introduced in [2]. A special case for p = 2
and g = 2, which is the best known constant modulus
algorithm, was introduced in [3]. The steepest decent
search algorithm is usually used to update the filter
coefficients for the CMA:

W(n+1)=W(n) - uv(n), (2)

where @(n) is the instantaneous estimate of the gradi-
ent of J w.r.t. W(n) and equals:

v(n) = (lym)® - 16 ly(n) X (n). (3)

W (n) is the equalizer weight vector, and X (n) is the in-
put vector of the equalizer. The actual updating equa-
tion for the steepest decent CMA can be written as:

W(n+1)=W(n) - plly(m)® ~ 0Ply(n) X (n). (4)

Two main disadvantages of the constant modulus
algorithm are its multimodal error surface and its slow
convergence rate. Much work has been done in devel-
oping more powerful blind equalization algorithms to
overcome the first problem. Some work has also been
done in developing fast CMA algorithms. In [4] the lat-
tice gradient search based CMA was introduced. The
algorithm converges faster but suffers from a high noise
floor [7]. A block frequency domain CMA was intro-
duced in [5], but the algorithm only aims at reduc-
ing the computational complexity. In this paper, three
different algorithms, the frequency domain CMA, the
fast quasi-Newton CMA, and the genetic search based
CMA are introduced. A comparative study of these
three algorithms suggests that the quasi-Newton CMA
results in the best performance.
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2. THE ALGORITHMS

2.1. The Fast Quasi-Newton CMA

In 1986 the orthogonalized constant modulus al-
gorithm (O-CMA) was introduced [6]. The algorithm
updates the equalizer weights by the following equa-
tion:

W(n+1)=W(n) - plly(n)|* - |5|2]y(n)R;1(n)X(f(lg,)
where R;(n) is the estimate of the autocorrelation ma-
trix of the input data vector X (n). The algorithm uses
the matrix inversion lamma to update the inverse of the
matrix R;(n) and has O(~N?) computational complex-
ity. Note that the Newton algorithm uses an estimate
of the Hessian matrix to minimize the cost function.
As pointed out in [6], the O-CMA is not a Newton
method because R.(n) is not equal to the Hessian ma-
trix for the constant modulus error criterion. How-
ever, R;1(n) works very well as a whitening transform
and can increase the convergence speed of the CMA.
Here, we use the same update equation as (5). But
instead of using the matrix inversion lamma, the fast
quasi-Newton algorithm (8] is used to efficiently up-
date the vector R;!(n)X(n). We will call this algo-
rithm the fast quasi-Newton(FQN) CMA. The FQN
algorithm achieves O(N) computational complexity by
performing only one matrix inversion for every NN input
samples. The efficient calculation of R;!(n)X(n) is
achieved by using the Levinson-Durbin recursion. As-
suming that the input statistics are slowly varying, the
estimate of the inverse of the covariance matrix R;!(k)
at k = n can be used to calculate the Kalman gains at
time steps k =n +1 ... n + N — 1. The following step
size p is used in the fast quasi-Newton CMA algorithm,
where § is a small number relative to the average value
of X(n)TR;(n)X (n):

1

b= X ) Re ()X (n) + 0] ©)

This formulation of step size has been used in other
quasi-Newton adaptive algorithms and seems to be nearly
optimal [8]. The summary of the fast quasi-Newton
CMA algorithm is listed in Table 1 [7].

2.2. The Transform Domain CMA

Inspired by the O-CMA which uses the ma-
trix RZ1(n) to orthogonalize the data vector X (n) and
achieves fast convergence rate, we introduce the trans-
form domain constant modulus algorithm. In linear
adaptive filtering, the fixed orthogonal transforms(eg.
DCT and DFT) are used to orthogonalize the inputs

Definitions: A = diag[l, a!/?, q, , aM-172]
R(n) = [ro(n), ri(n),...,ra—1(n)]
R;(n) = Toeplitz(R(n))

Recursion:  y(n) = WT(n)X(n)

e(n) = d(n) - y(n)
H = AXIRL (WX (m)+3]
R(n) = aR(n — 1) + z(n)AX(n)
S~! =R7'(n),

for n an integer multiple of N
Update S~'X(n) using FQN algorithm
W(n+1) = W(n) + ue(n)S~'X(n)

Table 1: Summary of the FQN-CMA

to the equalizer. Then, estimates of the power in each
channel are made (0?) and the step size for each chan-
nel is formed by dividing the nominal step size (u) by
the power estimate. This has the effects of whiten-
ing the input signal, decreasing the eigenvalues spread,
and increasing the convergence rate of the algorithm.
Because the convergence speed of the CMA is highly
related to the conditioning of the input data, a highly
colored input signal will produce a slow convergence
rate for the CMA. If weightening techniques are used
to the input signal, fast convergence can be achieved.
As in the linear adaptive filtering, the orthogonal trans-
forms and power normalization are used to whiten the
input signal of the constant modulus equalizer. Follow-
ing is the summary of the transform domain CMA.

W(n+1) = W(n) - ully(n)]® - 16]°ly(n) A7 X (n) (7)

X(n) =TX(n) (8)
y(n) = WT(n)X(n) 9)
A? = diaglo3o?...0%_,] + 1, (10)
Where,
oi(n) =aof(n-1)+ (1-a)lZ:(n)]?, (11)

and T is any linear orthogonal transform matrix. The
block diagram of the transform domain filter is shown
in Figure 1.

2.3. The Genetic Search Based CMA

The Genetic Algorithm is an optimization tech-
nique which emulates the mechanism of natural selec-
tion and genetics [9], including structured and random-
ized information exchange among a population of pa-
rameters represented by strings. The ultimate result of
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the operation is the survival of the fittest parameter set
over the problem domain. Because the algorithm does
not use the gradient information, it has the ability to
achieve global optimality on error surfaces that are not
unimodal.

The basic idea of the genetic algorithm is that it
works on a population of parameters of the system dur-
ing the evolution. Each parameter is represented by or
coded into fixed length string. The representation of
parameters by fixed length strings should cover all pos-
sible solutions of the problem domain or give very good
approximation to this problem domain. In most of
the situations the binary representation is used to code
each parameter. An initial population set is first ran-
domly generated. A fitness value is given to each of the
solutions among the population represented by fixed
length string. Each solution is then assigned a proba-
bility measure based on the fitness value which decides
the contribution that the solution would make to the
next population set. Two basic operations, crossover
and mutation of the genetic algorithm, are used to gen-
erate offsprings for the next population set. In the
crossover, the substrings of two strings randomly se-
lected according to their probability measure from the
current population are exchanged with each other, re-
sulting in two new strings. The principle of the crossover
operation is to generate a new set of parameters or to
reproduce offsprings by using crossover and mutation.
The mutation operation occasionally change the value
at a particular string position with a probability called
the probability of mutation. Its purpose is to insure
the diversity of the population during the course of the
searching. The ultimate result of the genetic search
operations is the survival of the fittest parameter set
over the problem domain. Because the algorithm does
not use the gradient information, it has the ability to
achieve global optimality on error surfaces that are not
unimodal. The details of the algorithm can be found
in [9]

Some work has been reported on using genetic algo-
rithms in adaptive filtering. But no direct comparison
between the genetic algorithms and the classical adap-
tive filtering algorithms has been reported. In this pa-
per, we apply the genetic algorithm into the constant
modulus algorithm and compare its performance with
other algorithms. In the algorithm, a population size of
M = 40 is used. Each equalizer coefficient is encoded
into 8-bit binary code. The following performance mea-
sure:

N
Ei= = S (B - PP, (12)
k=1

is used as fitness function. Here N is the block size,
over which the mean square errors between the mod-

ulus of the equalizer output and the desired modulus
are calculated, y;(k) is the output of the equalizer, and
i is the index of the i — th parameter set. The genetic
search algorithm is used to generate new sets of pa-
rameters at each iteration. The search stops when the
optimum parameters are achieved.

3. SIMULATION RESULTS AND
DISCUSSIONS

Computer simulations have been used to compare
the performance of the three newly introduced constant
modulus algorithms and the steepest decent based con-
stant modulus algorithm. The CMA algorithms are
used to equalize the distorted signals to compensate
the intersymbol interference. The DCT is used for the
transform domain CMA. Here the signal set z(n) €
{+1,-1} is used. A nonminimum phase channel model
taken from an example in [1]:

h(n) = %[1 + cos(2n(n — 2)/W] (13)

for n = 1,2,3, and h(n) = 0 for n otherwise, is used
here. The simulations were performed for W = 3.5 and
W = 3.8 which correspond to the eigenvalue spread
X(R) = 46.821 and X(R) = 192.90 and are denoted
as channel I and II, respectively. A 11-tap FIR filter is
used as equalizer. Figures 2 and 3 show the learning
curves for the four constant modulus algorithms for the
two channel models. From the results we can see that
both the fast quasi-Newton CMA and the DCT-CMA
have much faster convergence speeds than the steepest
decent CMA and the genetic search based CMA. This is
not surprising because both the algorithms use whiten-

_ ing techniques to improve the input conditioning. Of

all the algorithms the fast quasi-Newton CMA achieves
the fastest convergence rate. The genetic search based
CMA does not- give the satisfactory performance due
to the drawback of the inability of achieving high pre-
cision representation of the parameters. It is also more
computationally complex than the transform domain
CMA and the fast quasi-Newton CMA.

4. CONCLUSION

In this paper the three new constant modulus al-
gorithms, the transform domain CMA, the fast quasi-
Newton CMA, and the genetic search based CMA are
introduced. The computer simulations show that the
first two algorithms improve the convergence speed dra-
matically. This shows that the whitening techniques
are not only useful but also necessary for the CMA.
The genetic search based CMA converges fast but it
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also has high noise floor due to its inability of achiev-
ing high precision representation of filter parameters.
But one important feature of the genetic search based
algorithm is that it is able to identify the global opti-
mal, so it can be used first to find the initial values for
any other blind equalization algorithms.

[1]

2]

3]

4

[5]

(6}

[7]

(8]

[9]

5. REFERENCES

S. Haykin, Adaptive Filter Theory. Prentice Hall,
Englewood Cliffs, NJ, 1991

D. N. Godard, “Self-recovering equalization and
carrier tracking in two-dimensional data communi-
cation systems,” IEEE Transactions on Communi-
cations, COM-28, pp. 1867-1875, 1980.

J. R. Treichler and B. G. Agee, “A new approach to
multipath correction of constant modulus signals,”
IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, ASSP-28, pp. 349-472, 1983.

R. Gooch, M. Ready, and J. Svoboda, “A lattice-
based constant modulus algorithm,” Tuwentieth
Asilomar Conference on Circuits, Systems, and
Computers, pp. 282-286, 1986.

J. J. Shynk, C. K. Chan, and M. R. Petraglia, “Fre-
quency domain implementations of the constant
modulus algorithms,” Twenty-Third Asilomar Con-
ference on Signals, Systems, and Computers, vol. 2,
pp. 663-669, 1989.

R. Gooch and J. Lundell, “The CM Array:
An adaptive beamformer for constant modulus
signals,” International Conference on Acoustics,
Speech, and Signal Processing, vol. 4, pp. 2523-
2526, 1986.

T. R. Schirtzinger, “Designing Adaptive Equaliz-
ers Based on the Constant Modulus Error Crite-
rion,” M.S.E.E. Thesis, Department of Electrical
and Computer Engineering, University of Illinois at
Urbana-Champaign, 1994.

D. F. Marshall and W. K. Jenkins, “A fast quasi-
Newton adaptive filtering algorithm,” IEEE Trans-
actions on Signal Processing, vol. SP-40, pp. 1652-
1662, 1992.

D. H. Goldberg, Genetic Algorithms In Search, Op-
timization and Machine Learning. AddisonWesley
Publishing Company, 1989.

x(n)
SS—
-1 __..
z NxN @
oD wansform
-1
z T )TN
' :
* o
2 )
—
x(n-N+1)
Figure 1: The transform domain filter.
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Figure 2: Learning Curves of the four constant modulus
algorithms for channel I.
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Figure 3: Learning Curves of the four constant modulus
algorithms for channel II.
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