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ABSTRACT :

CMA Fractionally Spaced Equalizers (CMA-FSEs) have been
shown, under certain conditions, to be globally asymptoti-
cally convergent to a setting which provides perfect equaliza-
tion. Such a result relies heavily on the assumptions of a
white source and no channel noise (as is the case in much of
the literature’s analysis of CMA). Herein, we relax the white
source assumption and examine the effect of source corre-
lation on CMA. Analytic results are meshed with examples
showing CMA-FSE source correlation effects. Techniques for
finding all stationary and saddle points on the CMA-FSE er-
ror surface are presented using recent developments in the
Algebraic-Geometry community.

1.INTRODUCTION

“There are some aspects of blind deconvolu-
tion that do not fit easily into the theory pre-
sented in this chapter. The most important one
is probably what happens if the input sequence
is not white. Little work has been done on this
matter.” - Bellini [4]

In the equalization problem for digital communication,
a source sequence 3(k) drawn from alphabet members A =
{a1...am} is transmitted at a baud rate of 7 through an
analog channel c¢(t) (considered to include any pulse shap-
ing) which introduces intersymbol interference (ISI) on the
received signal r(t) which is then sampled at or above the
baud rate. The case where the sample period equals T is
known as “baud spaced”, whereas the case where the sample
period is T/L (for L positive integer), is known as “fraction-
ally spaced”.

A discrete-time adaptive linear equalizer with tap weight
vector D(k) = [do(k) di(k) dg(k)] is then used to
reduce the ISI, producing the output signal y(k) as in Figure
1. Proper equalization will result in y(k) = s(k — v) with v
being the channel-equalizer delay. The term blind refers to
performing equalizer adaptation without the use of a training
signal (a4 la LMS).

Channel] 1(t) | D/A Adaptive
s 0) feL/T qugz(i:)?ﬁr = Ly

Figure 1: CMA-FSE Block Diagram

In CMA, with a strictly real alphabet, the equalizer taps
are updated at baud rate based on the stochastic gradient
descent of the non-linear cost function,

1
J) = 7E{(" - *} (1)
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where v = 2 :: , for a € A. The CMA tap adaptation
becomes, ;
D(k+1) = D(k) — u(y° (k) — v9(k)) X (k) ()

where the equalizer output is y(k) = X*(k)D(k), D(k) is the
Q +1 x 1 tap vector, X(k) is the equalizer’s regressor at
time k (ie. X(k) =[r(¥T) r(kT-%) ... r(kT -QL)],
a @ +1 x 1 vector) and p is a small step-size.

In [3] it is noted that the fractionally spaced equalizer
problem can be phrased as a multi-channel baud-spaced equal-
ization problem as in Figure 2, shown for the case L = 2. For
a channel ¢(t) with time support between P +1 and P + 2
baud, each of the i discrete subchannels of length % is
denoted C; and the corresponding sub-equalizer (of length
241) at time k is denoted Di(k). The global system (i.e. the
combined channel-equalizer) at time ¥ is then defined by the
length N +1(= & 4+ 24 — 1) column vector H (k) given

by
H(k) = CD(k) 3)
Where C is the multi-channel convolution matrix as in (4).
[c1(0) ei(T) a1(PT) i
cL.(O) CL(.T) CL(.PT)
C= .. . . 4)
61(0) 1 (T) C1(PT)
i cx(0) e(T) ... ea(PT))
H
N
(k) c D, (k) y(®)
) D k)

Figure 2: Multichannel Block Diagram

It is shown in [3] that for the CMA-FSE meeting the
following conditions:

¢ Equalizer Length: equalizer time span meets or ex-
ceeds the channel time span.

¢ Sub-Channel Disparity: there exist two sub-channels
that have no common roots.

o Noiseless Case: no channel noise is present.

¢ Source Whiteness: the source is a uniformly dis-
tributed iid sequence.
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then the CMA error surface exhibits only global minima with
perfect equalizing performance. We now investigate CMA-
FSE’s behavior meeting the length, no noise, and channel
diversity conditions, but relax the white source condition to
allow for temporally correlated sources.

2. CMA-FSE STATIONARY POINTS

The convergent points of the CMA-FSE adaptive equalizer
are the minima of the error surface formed by (1). These min-
ima are a subset of the error surface stationary points which
are described by % = 0. Consider the equalizer output y(k)

due to a source vector S(k) = [s(k) s{k — N)]*. With

y(k) = D*C'S(k), the cost function gradient is given by,
% = E{((D'C'S)* - yD'C'S) CS) (5)

With H = CD, and recognizing C as a non-random quantity
this becomes,

aJ

55 = CE{(#'sy

- vH'S) S} (6)

Since C is full column rank by channel disparity condition [5],
then % = 0 necessarily implies

E{((#H'S)*—vH'S)S} =0 (M
Hence, the stationary points of the CMA-FSE equalizer cor-
respond to stationary parameterizations of the global system
which are affected only by the source statistics.

The importance of this result is that it allows an analysis
of CMA stationary points (and hence equalization behavior)
that is independent of a particular channel (meeting the per-
fect equalization conditions). Furthermore, it allows assess-
ment of correlation effects in terms of the source correlation
(as opposed to the received signal correlation). Expanding 7
yields,

Sk
E ((skho+. . -+8k—NhN)3—“/(8kho+- . .+Sk_NhN))

Sk—N,

Taking the expectation operator with respect to the source
regressor elements s leads to N + 1 multivariate polynomials
in H (the combined channel-equalizer vector) with monomial
coefficients given by the second and fourth moments of the
source signal. Let these moments be represented by,

R,‘i = E{sm—ism—jsm—ksm-—l}
R; = E{sm-ism-j} (8)

Herein, we assume stationarity so only three (one) lag terms
are needed to describe the fourth (second) moments. How-
ever, all terms are retained to better show the structure of

(9). The resulting system of equations may be written as,

E’R, h3+3Z‘R ih3h; + En hikjh -7211%

i#g i#y#k
Z’R iR+ 3211 Bihi+ > ‘R, hihjhi -7Zm

(£ 3] iEg#Ek (9)
Z‘R h3+3ZR R2h; + ZR hihjhy —7ZR~

(2] i#)#k i

Arranging these coefficients into a vector R we denote 9)
as F(H, ﬁ) Values of H for which F(H,R) = 0 define the
CMA stationary points.

3. WHITE SOURCE RESULTS

Consider the system F(H,R) under the white source condi-
tion. In thls case, all elements of R become zero except for

R' (= R ) ’R' (= R%?), and R} (= R2). With the further as-

sumptlon of equlprobablhty of each alphabet member (hence
Rg /RS = v), then (9) reduces to
0

(R Sh% +3R D kY- ‘R°> = 0

1#¥m

(10)

for 0 < m < N. Tt is seen that any k,, = 0 trivially solves
fm = 0 (where fr, is the m*® equation of (9). So, only fm for
which Am 7# 0 need be further considered. Since each non-
zero by, in a solution set must solve each equation fr,, we
have that the value of k2, for all non-zero hy, in this solution
must be the same. Divide the solution set of F(H,R) =0
into classes Cx, where K (0 < K < N +1) is the number of
non-zero elements of H. Then we have each h,, € Cx must
solve the equation,

0

o
Ry
+ | —2— for 1< K<N+1 (11)
3(K-1)R>+RY
']

hm =

Notice, that the K = 1 solution set corresponds to H hav-
ing only one non-zero entry (of value 1) and thus a perfect
equalization setting. Such settings are stable since the cost
function hessian is the identity matrix (strictly positive eigen-
values). For K > 1, such the solution sets are saddle points
since the cost function hessian may be seen to be strictly non-
definite by a diagonal non-dominance argument. Such results
agree with those as in [3], [5]. It is further noted that since
every element of a solution set satisfies (11), that there are
3N+l stationary points in complex space.

4. PERFECT EQUALIZATION FOR NON-WHITE
SOURCES?

We may turn the result for white sources around and ask, “for
which source correlations do there exist perfect equalization
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parameterizations which are stationary points?”. Denote the
perfect equalizing parameterizations by H?* (i.e. the global
system parameterization which has all zero entries, except for
a1 (or —1) in the j** position). Evaluating F(H’*, R) yields
the conditions

Ri = (12)

For the iid, uniformly distributed source case, these condi-

tions are trivially satisfied since R = R! = 0 whenever
J

t # j and Rs = 4R} (by definition of v). However, for

YR} for0<i< N

the non-white case such a set of conditions is quite restric-
tive and appears to preclude any possible realistic source
correlations. Although it is apparent that several types of
“pathological” (in the sense that they bear no information)
source sequences would satisfy (12) (e.g. s(k) = v Vk or

S=f =v v —-v ...1)
5.SOLVING FOR STATIONARY POINTS

Direct algebraic solution for the roots of F(H, R) is difficult
in the general case, as F is a set of multivariate polynomial
equations with many monomials. However, the numerical
approach of continuation methods {1], [6] may applied to solve
for roots of F(H,R) given a specific R.

In this method, one introduces the homotopy

B(\) = AF+c(1-))G (13)

consisting of the system of interest (here, F'), a system G with
known roots, and a random complex constant c. As ®(A) is
a system with one degree of freedom, the solutions breakup
into paths a.e. Now, the desired roots of F' may be found
by “tracing”, in a predictor-corrector fashion, the roots of &
from the known roots of G to the roots of F' by varying A
from 0 to 1.

Mathematically, there are three issues of concern. First,
in order to perform such root tracing, we must be guaranteed
that there are the same number of roots of systems F and
G. We construct G such that this is true and follows from
Bernstein’s Theorem [2] or by recognizing that our system
F satisfies the Bezout upper bound. Furthermore, nastiness
such as bifurcations or path crossings must be ruled out. This
is accomplished herein by the use of the random constant ¢
which puts the systems F and G in relatively general position.
A detailed presentation may be found in [6]. Specifically, we
choose G to be the CMA-FSE system under uncorrelated
source, with the known 3V*? solutions as shown above.

6. PERFORMANCE AND CORRELATION
METRICS

In the equalization problem, an appropriate metric of per-
formance is the level of ISI at a stable stationary channel-
equalizer parameterization. We introduce a measure of ISI,
p1s1, to be

ZLO |hi] — max; |hi]
max; |hil

wsi(H) = (14)

As we are motivated to show the effect of source correlation
on achieved ISI, we define a metric on non-whiteness as,

pcor(R) = ||R - Rl (15)

where R, is the vector R evaluated for an iid, uniformly
distributed source, and || e || is the £; vector norm.

7. PERIODIC SOURCES

Documented failures of CMA-FSE equalizers in actual ap-
plication in the presence of periodic sources exist [8]. Using
continuation methods, the stable stationary points for CMA-
FSE under periodic sources may be computed. To gain some
insight into how the ISI may be effected as the period in-
creases, a monte-carlo computation was performed. For each
period (p) of length 32, 64, ..., 8192, twenty source sequences
with equal symbol occurrence were randomly drawn from a
4-PAM, unit variance alphabet, (ie. A = -5;{—3,—1, 1,3}).
For each sequence, all stable, stationary combined channel-
equalizer parameterizations corresponding to a 4 tap (half-
baud spaced) channel and 4 tap equalizer when L = 2 were
computed, along with the corresponding pcor and pisi. The
results relating ursi and pcor are plotted in Figure 3 which
exhibits a general trend of pist with increasing correlation
(#cor). Also plotted is p1s1 versus the sequence period (p)
in Figure 4. Here as the period increases, p1s; tends to de-
crease. As E {limp_.oo R = 'ﬁ.w}, one expects that prs1 — 0,

since H’* is a stable, stationary point for white sources.
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Figure 3: prs1 vs Correlation
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Figure 4: p1s1 due to Random Periodic Sources of length p

8. MARKOYV SOURCES

As another model of temporally correlated sources, we choose
a Markov model. This allows the modelling of a white source
as well as temporally correlated sources. Furthermore, since
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convex combinations of Markov transition matrices are them-
selves valid transition matrices, we can produce a source
model which allows smoothly varying R. Then the station-
ary points can be traced as the source correlation increases.
Consider a Markov state transition matrix =, (in which each
state represents an alphabet member) which generates a white,
uniformly distributed source. (i.e. each matrix element equals
% for a m-ary source). We choose a transition matrix, =,
which corresponds to a source correlation of interest and re-
define & to be

O(\) = F(HAE+(1-A)za) (16)-

which yields a system wherein performing continuation meth-
ods yields a data point of interest at each evaluation of .
An example for the case = as in Appendix, demonstrates
the stationary point movement from H>* for a 5 tap system
under increasing source correlation. Figure 5 plots the sta-
tionary point trajectory as A in (16) is varied from 0 to 1.
The increasing pis: is plotted as a function of pcor in Fig-
ure 6. The hessian of the cost function was checked at each
iteration to verify the stationary point remained a stable one.

Statonary Point Trajectory
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Figure 5: Stationary Points Under Increasingly Non-White
Source
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Figure 6: ursy versus pcor

9. CONCLUSION

In this paper we have presented source correlation condi-
tions which admit perfect equalization under CMA adap-
tation. Failing such (restrictive) conditions introduces ISI
even though a zero ISI equalizer setting exists. Furthermore,

the CMA error surface loses its globally convergent property
(with equally performing minima) and will now have local
minima of differing performance. A method for finding all
the stationary points of a system under correlated input is
presented. A measure of a correlated source’s closeness to
admitting perfect equalization (zcor) has been introduced,
as have some examples showing a general trend between this
measure and resulting ISI for correlated source models (peri-
odic and Markov).

10. APPENDIX

Moments of Markov Source: Define the state vector as
A=[a am]' , where a; € A, and the state transi-
tion matrix as E, (where the element Z;; is the transition
probability from state i to j), and the steady state probabil-
ity vector Il = [m *m ]° (Where =; is the steady state
probability of state i), then the temporal correlations for our
zero mean process with equiprobable states are then given by
(assuming i < j < E),

3
° . . )
Ri = D 6a0804857a(Z)57(F7)1,8(E ) pa
k
a,B8,7,6=0
3 .
R = Eaaa,gra(E')p,a (17)
a,B=0
Example Transition Matrix:
0 06 02 0.2
Z, = 0 0 02 038 (18)

0.8 02 o0 0
0.2 02 06 O
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