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ABSTRACT

Existing blind adaptive equalizers that use nonconvex cost
functions (as Bussgang type algorithms) and stochastic
gradient descent suffer from lack of global convergence to
an equalizer tap set that removes sufficient ISI when an FIR
equalizer is used. In this paper we propose a new algorithm
including a tap anchoring and gain recovering into the
classical schemes. The combined effect of these strategies is
to establish the preservation of the transmitted symbol
preventing for ill convergence, and therefore providing the
ability of implementation the inverse filter regardless of the
initial ISI. Under certain hypotheses, we suggest that a
globally convex scheme can be proposed overcoming the
existing structures. Several computer simulations support
our theoretical results.

1. INTRODUCTION

Blind adaptive channel equalizers are important devices in
high data rate, bandlimited digital communication systems
in which the transmission of a training sequence is
impractical or very costly. In this way, the receiver can
begin its self adaptation without the assistance of the
transmitter. The ability of blind start-up also enables a
blind equalizer to self recover from system breakdowns,
during which the equalizer may have lost track of the desired
parameter settings. Many techniques for blind equalization
have been proposed in the recent literature, which the most
important are the Bussgang type algorithms and the higher
order statistics (HOS) based algorithms {1].

Bussgang type algorithms intend the estimation of the
transmitted symbol by means of a zero memory non
linearity, as an internally desired response gemerator.
However, the main drawback of these schemes is the lack of
convexity, where any stochastic gradient algorithm can be
trapped in a local minimum, sometimes far away of the
desired response [1].

On the other hand, methods exist in which the channel
coefficients are obtained by solving systems of nonlinear
equations that involve the higher order cumulants of the
channel output [1,2]. Some recursive algorithms based on
cumulants have also been reported but they are
computationally expensive. It must be remarked that the
main drawback to-date of these methods is that very long
data lengths are needed in order to reduce the variance
associated with estimating the higher order statistics from
real data using sample-averaging techniques. Also, these
methods trying to estimate the inverse filter neglecting the
noise effect, fall down when the channel has spectral nulls
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because the noise enhancement may degrade critically the
desired behavior.

Therefore, Bussgang type blind equalizers should be very
attractive, if we were able to avoid the presence of local
minima: in this line, techniques based on sopt&go schemes
have been proposed providing effective blind convergence
in the MSE sense [3]: a simple flag tells the equalizer
whether the current output error is sufficientlly reliable to be
used; in this way, it works retaining the advantages of
simplicity of the Decision Directed Algorithm (DDA) while
attempting to substantially improve its blind convergence
capabilities. However, it must be pointed out that the cost
function remains multimodal.

Another research line has been developed in the recent years
in order to find new cost function achieving unimodality by
introducing a linearly constrained equalizer with a single
constrained tap {4, 5]. The methods proposed are based on
the original work by Lucky [6] who reported the strategy of
tap anchoring and also analyzed its effect on the global
convexity of the ISI criterion function he considered.
However, their main drawback is the slow convergence of
the gradient descent approaches.

Also, tap anchoring has been the starting point of our
research [7, 8]: our proposal consist in a linearly
constrained equalizer also with an adaptive zero memory
nonlinearity for gain /phase tracking. In this work we
present the scheme supported by an important theoretical
background showing its globally convex characteristic for
non minimum phase channels, under certain hypotheses
about the ISI distribution. In particular we have developed an
algorithm labeled as Modified Decision Directed Algorithm
(MDDA), which is basically a modification to the standard
DDA, including a fixed tap equalizer and an adjustable
decision device. Additionally, this scheme can be easily
extended to other Bussgang type algorithms as the Constant
Modulus Algorithm (CMA). The main idea in our opinion
about the tap anchoring, is the fact that this strategy
preserves in some way the transmitted symbol and therefore
prevents for ill convergence.

2. THE MDDA

Let us start showing the block diagram of the MDDA in
Fig.1: an unknown PAM sequence is transmitted (the
extension to QAM is straightforward) through a generic non
minimum phase channel delaying A samples and also
introducing a noisy effect. In the receiver, a two sided
equalizer (2N+1 taps) intends the ISI elimination. Also, it
introduces a blind automatic gain control (AGC) to estimate
and compensate the channel amplitude. Finally, a decision

device including an adjustable gain (denoted «) estimates
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Fig.1: Block diagram of the MDDA

the transmitted symbol also driving the error measure e[n].

First of all, let us express the equalizer output as:

y=c'HI 1))
where c is the equalizer coefficient vector, H is the channel
convolutional matrix and I is the transmission vector.
Splitting the terms in (1) into the current symbol and the
remainder, and also remarking the special role of the center

tap we have:
c 1]
a CN a I
c=|cy | = I={/ |—> I
Ol I, 1 2)
where cf =(c'a c;,) and I} = (I’, I;,)
B Bawi Bas2 H, h, H,
H= Bam1 Ba May =|hy h hg |-
haa hay By H; h; H,
hy hf H, H,,J
- where H; = R 3)
(hz 1) : (Hd H,
hi=(hj Bi) by=(h, hy)
After some algebra we reach the following equation:
y=cNhA1+cl‘h21+CNh:II +c1'H111 (4)

As we proposed in [7] for minimum phase channels, a good
criterium to design the linear constraint is to preserve
always the transmitted symbol (the remainder terms are
considered as ISI), i.e.

cNhA +Clth2 #0 (5)
However, the choice for no minimum phase channels is not
so simple as we proposed because the current symbol
depends on the whole equalizer parameter set; in the
minimum (maximum) phase case it can be shown that for a
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one side equalizer, the current symbol depends only on the
first (last) tap, and so that, the obvious choice is to fix this
tap leading to a linear forward (backward) prediction
problem. In a generic case given by eq. (4), it could be a
good idea considering a practical constraint to fix the center
tap, assuming that the channel impulse response is
maximum for a A samples delay (this intuitive choice
connects with the early work by Lucky[6] and the anchoring
tap in [4, 5 and references therein]). Also in this line we
want to recall the work developed in [9], where a linearly
constrained filter is considered as the convolution of a
forward and a backward linear predictors, each one
implementing the minimum and maximum phase which
every nonminimum phase channel can be decomposed. -

3. MDDA. ANALYSIS OF CONVEXITY.

The error surface proposed is given by:

J= E{(y- adec(y))z} 6)

Taking derivatives, the gradient vector yields:
;c—’l - 2E{yi—yl}—2a5{dec(y>%} 7a)
& - 2ar{sect ()}~ 2E{ecty)} )

Substituting (7b) into (7a), the condition of stable points
yields:
%

2E y-iy— —2E{ydec(y)}E dec(y)——7=0
3c, 8c1 (8)
where % =h,/+H I,
After some algebra we obtain:
hy(E{yl}- E{ydec(y)}E{ldec(y)})+ -

E{H,1,y}- E{ydec(y)} E{H,I,dec(y)} = 0

The main problem of this analysis is the evaluation of the
expected values involving the thresholding function and



vector H1I1; in [10] is suggested a useful relation for the
calculus of cross-moments between zero mean gaussian
random variables involving the sign function. Following
that idea, recall that assuming a conditioned model for the
residual ISI, Y conditioned to I=/ can be considered as a
gaussian non zero mean random variable [11]. Also, notice
that each component of vector H1I1 (in the sequel we will
denote as vector x), is obtained as a linear combination of
many i.i.d. random variables, and applying the Central
Limit Theorem, the gaussian hypothesis is supported so
much the longer the channel is; summarizing, we propose
the following hypotheses:

Y| N(cyhyl+c¢'hy1,0,)
X N(0,04)
where € means ISL.

(10)

However, we can not apply directly the expression given in
[10], because our random variables although gaussian are
non zero mean. So that, we have derived a generalization of
the expression in [10] for generic gaussian random
variables.

Theorem I:Let X and Y as gaussian random variables
N(0,0,) and N(ny,o‘y) respectively and p as the correlation
coefficient. Also, let us denote g(-) as a generic non linear
transformation; it can be shown that:

E{xy}E{(y-n,)e}
2
Eﬂy‘"y)}
Applying theorem 1, (9) can be expressed as:

E { ydec( y)}

E{ydec(y)} E{(y-y)decn}

ol oo

an

E{xg(»)}=

hz| E{y7}-— E{ldec(y)} |+

(12)

E{xy}{ 1-

Note that (12) is a vectorial equation where each component
of both terms are multiplied by two scalar functions
depending on the ISI power and a gain factor (recall (4)
where the equalizer output can be considered as a
composition of the scaled current symbol and a gaussian

ISI: Y=al+¢)
hog1(y)+ E{xy}g,(y)=0 (13)

In [8] we have reached a very similar conclusion but for
binary transmission (or 4QAM). We concluded there that if
we were able to preserve the transmitted symbol (anchoring
the center tap yields as sufficient condition for several
channels we have tried), we assured that there is only one
stable point. However, for higher order constellations there
is a critical point in the gain recovery; we have observed
that even for minimum phase channels, if the gain is not
recovered we can not assure the right convergence.
Therefore, assuming that the AGC works fairly well, and so
on the coefficient of the current symbol is approximately 1,
functions g, and g, have been depicted in Fig.2. Here, we
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want to point out that if this hypothesis is not assumed, we
can not guarantee the global characteristic of the cost
function proposed. However, simulations support our
analysis.

Evolution of functions g,() g()

60 30 40 30 20 10 0 10
Residual ISI (dB)
Fig.2 Evolution of functions g; and g,

Solving equation (13) to find the stability points, let us
consider the following cases:
a) For advanced convergence levels, first factor vanishes.

Since g,(y) never vanishes, the stable point arises from
the correlation factor, i.e.:

E{xy}=0 (1)
b) For not advanced convergence levels, neither g;(y) or

g2(y) vanish. So that, the stable points must keep the
following condition for each component:

E{xy}eh, (15)

Recall that (15) never can happen because each component
of the cross-correlation depends on the whole channel
impulse response, meanwhile, each component of the other
term is just one sample of the channel impulse response. So
that (6) has only one stable point, solving equation (14),
that is:

E{ydec(y }

el

ol
Clopt =_CN(HH ) Hih, Cope =
€1 =€y
(16)

4.LCCMA WITH ADAPTIVE PARAMETER
ANALYSIS OF CONVEXITY.

Once we have developed the analysis of convexity for the
MDDA, the resulis are easily extended to other schemes as
the Linear Constrained Constant Modulus Algorithm
(LCCMA) with variable parameter. This method was
presented in beamforming applications [12 and references
therein] as a combination of two existing untrained
adaptive techniques: linearly constrained minimization of
output power and unconstrained minimization of complex
envelope or modulus variations. Additionally, it is pointed
out the possibility of making the CMA parameter also
adaptive. In this case, the cost error function is:

J= E{[|y|2-y]2} an

Taking derivatives in (17) we find the gradient:



aJ . O d
= SR G IV o) Bt 18
e, 2E{yy dc; ¢ } ﬁ{acl d } (182
oJ .
-é-;=2y-25{yy } (18b)

and substituting (18b) into (18a) and after some algebra, we

obtain the same stability condition given by (13);

Additionally, it is much more simpler because in this case,

functions g; and g, are given by:
21(y) = ac? 19
82(y)= a’

At this point, we follow the same argument to show that
this scheme is globally convex also with only one
minimum whose position is given by (16).

5. COMPUTER SIMULATIONS

Finally, some computer simulations support our proposal.
We have chosen a typical telephone channel impulse
response {13]:

H(z)=0.04-0.05z"! +0.07z72-0.21z2 - 0.5:™*

+0.72275 +0.3627% +0.21278 +0.03z72 +0.07271°
(20)

First at all, we will like to show that (16) is in fact the
optimum equalizer. We have implemented equation (16) for
the channel given by (20) for a 31 taps equalizer; the
impulse response is given in Fig.3 (the convolution of the
channel and equation (16) is the Kronecker delta).

Optimum equalizer impulse response
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Fig.3. Optimum equalizer impulse response

To show the ability of the methods proposed to recover the
transmitted symbols, we have implemented both
instantaneous stochastic gradient descent algorithms. In
order to prove its global convergent characteristic, we have
chosen the initialization point randomly observing that
always is reached the right solution. We have considered a
16QAM transmission for the MDDA, and a 8PSK for the
MCMA with a 31 taps equalizer. See Fig4, 5.
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