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ABSTRACT
A discrete-time, discrete-frequency Wigner distribution is
derived using a group-theoretic approach. It is based upon
a study of the Heisenberg group generated by the inte-
gers mod N, which represents the group of discrete-time
and discrete-frequency shifts. The resulting Wigner dis-
tribution satisfies several desired properties. An example
demonstrates that it is a full-band time-frequency repre-
sentation, and, as such, does not require special sampling
techniques to suppress aliasing. It also exhibits some in-
teresting and unexpected interference properties. The new
distribution is compared with other discrete-time, discrete-
frequency Wigner distributions proposed in the literature.

1. INTRODUCTION

The Wigner distribution is an important tool for analyz-
ing signals. Its usefulness arises from the fact that it sat-
isfies many desired mathematical properties. Such prop-
erties include the time and frequency marginals, Moyal’s
formula, the relationship with the ambiguity function, and
the relationship with the spectrogram (and related smooth-
ing). For practical applications involving discrete computa-
tions, though, the utility of the Wigner distribution depends
greatly on the discretized form chosen for use.

There are several different approaches to extending the
theory of continuous time-frequency distributions to the
discrete-time case, [1, 2, 3, 4]. Unfortunately, a discrete-
time, discrete-frequency Wigner distribution which satisfies
all of the desired properties has not yet been determined.
A common form used is a frequency-discretized version of
the discrete-time Wigner distribution outlined by Claasen
and Mecklenbrauker [5], which we call WCM. This time-
frequency representation satisfies some of the desired prop-
erties: the auto-WCM Wigner distribution is real and the
convolution of the WCM Wigner distribution of a signal
with the WCM Wigner distribution of a window is the cor-
responding spectrogram, other properties, such as Moyal’s
formula and the marginals, are not satisfied. More signif-
icantly, this discretized version is a half-band representa-
tion, so that one must double the signal sampling rate to
compute it properly. One would then like to find a new
approach which overcomes these difficulties.
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2. GROUP THEORY AND TIME-FREQUENCY
ANALYSIS

The approach described here is motivated by group-theoretic
generalizations of classical Fourier analysis. The theory of
continuous time-frequency distributions is seen as a special
case, when the group comprises the real numbers under
addition. Properties of continuous time-frequency distri-
butions, [6, 7], are appropriately generalized for discrete
groups, and the resulting time-frequency distributions are
shown to obey these properties, in a fashion analogous to
the continuous time-frequency case. The distributions de-
rived here are compared and contrasted with others pro-
posed in the literature, [1, 2, 3, 4].

As explained in [8], classical Fourier analysis can be ex-
tended to a group theoretic setting, in which the continuous-
time domain is replaced by a group, the complex expo-
nentials are replaced by the group’s irreducible represen-
tations, and the continuous-frequency domain is replaced
by the dual group. Thus classical Fourier transform may
be viewed as a special case of Fourier analysis on a group,
where the group is the group of real numbers, R, under
addition. The familiar discrete-time Fourier transform, for
infinite-length discrete-time signals, may be viewed as per-
forming Fourier analysis on the group of integers Z. The
appropriate frequency domain for discrete-time is the dual
group of Z, which is the unit circle T (the set of complex
numbers of modulus unity, which form a group under mul-
tiplication). The DFT matrix arises from Fourier analysis
on the group of integers mod N, Z/N, and the appropriate
frequency domain is Z/N (it is self-dual).

For discrete-time time-frequency distributions, one
would expect to look at the group generated by discrete-
time shifts and discrete-frequency shifts: this is the ap-
proach adopted here. It leads one to investigate the Heisen-
berg group generated by the integers, [13, 14]. Heisenberg
groups have been studied in the mathematical literature,
[15, 16, 17]: we draw upon this work, and reinterpret these
results in the context of time-frequency analysis.

An advantage of this general setting is that it covers un-
usual cases where the underlying group is neither continuous-
time (R) or discrete-time (Z) but something else. For in-
stance, in the discrete-time, discrete-frequency case, we are
dealing with discrete-time N-periodic signals rather than
arbitrary discrete-time signals. The underlying group com-
prises the integers mod N (Z/N): time-frequency analysis
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of these signals is related to the Heisenberg group gener-
ated by Z/N, ie., the group generated by discrete-time
and discrete-frequency shifts. This is in contrast with the
Heisenberg group generated by discrete-time and continu-
ous frequency shifts. We describe the ambiguity function
and Wigner distribution based on the Heisenberg group
generated by Z/N, and demonstrate the marginal and Moyal
properties.

The following two sections summarize work found in
[19].

3. DEFINITION OF A DISCRETE-TIME,
DISCRETE-FREQUENCY WIGNER
DISTRIBUTION

Define the discrete Fourier transform (DFT) of a discrete,
N-periodic signal z(n) to be

N-1 ,
X(k) = ﬁ Z eIV £ (), 1)

and the inverse discrete Fourier transform (IDFT) of X (k)
to be

N-1
z(n) = 1 e_]‘21rnk/N
(n) Wi n§=0 X (k). (2)

The non-standard factor is used for purposes of symme-
try. Likewise, the two-dimensional discrete Fourier trans-
form of a discrete function z(r,v), N-periodic in both ar-

guments, is defined as
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while the two-dimensional inverse discrete Fourier trans-
form of X (n, k) is defined as
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Now, define the frequency modulation operator, M,,
(Myz)(n) = &N g(n), (5)
and the time advance operator, S-,
(S-z)(n) = z((n + 7)n), (6)

using the notation (a)x = ¢ mod N. The cross-ambiguity
function of two discrete, N-periodic signals z and y,
Az,y(7,v), is defined as the inner product between its first
argument z(n), time-shifted and frequency modulated, and
its second argument y(n):
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This expression for the cross-ambiguity function is the
discrete realization of the “symmetric” cross-ambiguity func-

tion defined in [18]. The phase factor e’ = s present
to preserve commutativity between the time advance and
frequency modulation operators.

The new discrete cross-Wigner distribution, Wz ,(n, k),
which we call WS, is the two-dimensional Fourier transform
of the cross-ambiguity function, Az 4(7,v),

Wi y(n, k) =
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4. PROPERTIES OF THE NEW DISCRETE
WIGNER DISTRIBUTION
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We can demonstrate that the time-marginal property holds
for WS by summing the auto-Wigner distribution of z,
We,z(n, k), over all n for fixed k, to obtain
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We thus derive the time marginal property:

N-1

> Waa(n, k) = NIX (k). (9)

n=0

WS also satisfies the following frequency marginal prop-
erty:

Z Wi.z(n, k) = Nlz(n)[%. (10)

The l:wo—dlmensmna.l inner product of the cross ambi-
guity functions Az, ,y, and Az, y, is

(AII w1 Asyys) =
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(11)
so WS satisfies Moyal’s formula.

We also note that the auto-WS Wigner distribution is
real and that the convolution of the WS Wigner distribution
of a signal with the WS Wigner distribution of a window is
a spectrogram.

5. EXAMPLE AND COMPARISONS

We evaluate the new Wigner distribution (WS) for a test
signal consisting of a cosine (cos(2x(0.4)t)) and a chirp

(6_2”'48"2) spaced in time: in M ATLAB notation,

x=[cos(4*pi/5*[0:63]’) ;zeros(48,1);...
exp(-96+j#pi[0:1/128:5/8-1/12817."2)]

We also compare this result with the computed distribu-
tions specified by Claasen and Mecklenbriuker (WCM) and
by Peyrin and Prost (WPP). Each of WS, WCM, and WPP
is illustrated in Figure 1 for the given test signal. As shown
in the figure, the distribution described by WS does not
suffer from aliasing for either the cosine component or the
chirp component, even though each of these signal com-
ponents has frequencies greater than 14-‘- WS can thus be
characterized as a full-band time-frequency representation.
WCM and WPP cannot be characterized in this way, as
aliasing occurs for the given test signal. Another feature
shown in Figure 1 is the unusual interference properties of
WS. Strong interference terms appear only where there is
time support and frequency support in the signal. This is
quite different from the interference shown for WCM and
WPP, where terms appear halfway in between signal com-
ponents in time and frequency.

There are some interesting relationships among these 3
distributions. Let yny be a given length-N signal and y,n
be the signal obtained by padding y~ to length-2/N. Then
WCM for yn is equivalent to the result obtained by dec-
imating WPP for yo» by 2 in both time and frequency.
Also, the magnitude of the ambiguity function correspond-
ing to WCM for yn is equivalent to the result obtained by

decimating the magnitude of the ambiguity function corre-
sponding to WS by 2 in both time lag and frequency lag.
However, there is no simple relationship between either WS
and WPP or their corresponding ambiguity functions. We
thus interpret WPP as an interpolation of WCM in the
time-frequency plane, and we interpret WS as an interpo-
lation of WCM in the ambiguity plane.

Each of the discrete-time, discrete-frequency Wigner
distributions proposed in the literature has various advan-
tages and disadvantages for use in studying signals in the
time-frequency plane. The new distribution derived here
also demonstrates qualities which merit its use in discrete-
time, discrete-frequency analysis of signals.
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