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Abstract—We present a theory of quadratic time-frequency
(TF) energy distributions that satisfy a covariance property
and generalized marginal properties. The theory coincides
with the characteristic function method of Cohen and Bara-
niuk in the special case of “conjugate operators.”

1 INTRODUCTION AND OUTLINE

Important classes of quadratic time-frequency representa-
tions (QTFRs), such as Cohen’s class’ and the affine, hy-
perbolic, and power classes {1]-[8], are special cases within
a general theory of displacement-covariant QTFRs [9]. This
theory (briefly reviewed in Section 2) is based on the concept
of time-frequency displacement operators (DOs).

In Section 3, we shall consider the important separable case
where a DO can be decomposed into two “partial DOs”
(PDOs). Section 4 defines marginal properties associated
to the PDOs and derives constraints on the QTFR kernels.
Section 5 shows that, for “conjugate” PDOs, our theory co-
incides with the characteristic function method of [10, 11].

2 DISPLACEMENT-COVARIANT QTFRs

Time-Frequency Displacement Operators. A DO is
a family of unitary, linear operators Dy defined on a linear
space X C L2(IR) of finite-energy signals z(t), and indexed
by the 2D “displacement parameter” 8 = (a,8) € D with
D C IR2. By definition, Dy obeys a composition law

Dy, Dy, = &%) Dy 4, (1)

where o is a binary operation such that D and o form a group®

with identity element 6o and inverse element §~'. The TF
displacements produced by a DO are described by its dis-
placement function (DF) d(z,0): if a signal z(t) is localized
about a TF point z = (¢, f), then (Dg z)(t) is localized about
some other TF point 2’ = (¢, f’) given by

2 =d(z,0),

which is short for t' = di{t, f; @, 8), f' = da(t, f; @, 8). The
DF’s construction is discussed in [9]. The DF is assumed
to be an invertible, area-preserving mapping of Z onto Z

(where 2 C R? denotes the set of TF points z = (¢, f)), and
to obey the composition law (cf. (1))

d(d(z, 61), 02) = d(z, 61062). (2)

The parameter function p(z',z) of Dy yields the displace-
ment parameter § that maps z into 2/,

*Funding by FWF grant P10012-OPH.

1Short for Cohen’s class with signal-independent kernels.

2The group axioms are (i) 81 o 82 € D for 81,02 € D, (ii)
01 0 (02 083) = (81 0 62) 0 b3, (iii) 08¢ = Bg 06 = 6, and (iv)
- tof=000"" = 6.
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d=d(z0) & 8=p(2),

which is short for « = p1 (¢, f'; ¢, f), B =p2(t', f'; 1, ).

Two Examples. The TF-shift operator S.,, defined
as (Sr,z)(t) = z(t—7)e’?™t is a DO with composi-
tion law (1) Syg,upSriwy = €792™12 8 4 yitu,, DF ' =
dl(tyf;'r:’/) =t+T, fl = dz(t,f;T',I/) = f+V, and param-
eter function 7 = p1(t', f5¢, f) =t —t, v =p2(t', f';¢, f) =
f — f. Another DO is the time-shift/TF-scaling operator
C.,- defined as (Ca,rz)(t) = va z(a(t — 7)) (@ > 0),
with Cap,rgCay,r1 = Coayag, rjag+mer DF £ = di(¢, fia,7) =
t/a+ 1, f = dat, f;a,7) = af, and parameter function
a =p1(tl7fl;t7f) = f,/f7 T=p2(tllfl;t1f) =t —t.f/.fl'

Displacement-Covariant QTFRs. A QTFR T:(t, f) =
T:(z) is called covariant to a DO Dy if

Tp,.(z) =T=(2)  with Z=4d(z,07"). (3)

It can be shown [9] that all QTFRs satisfying the covariance
property (3) are given by the 2D inner product®

T:(2) =//x(t1)x‘(tg) (Dﬁz)zo)h)*(thtz)dtldtz 4)

= / X(f1) X" (f2) (D, .o H) (71, f2) dfrdf2 (5)
f1/f2

where h(t1,t2) is a 2D “kernel” (independent of z(t)), z0 € 2
is a fixed reference TF point, D? is the outer product of
Dy by itself?, X(f) = Fiusz(t), Dg = FDpF !, and
H(f1, f2) = Fey—p Fy—s—ss h(t1,12). Conversely, all QT-
FRs (4),(5) are covariant to Dy. We note that (4) can be
written as the quadratic form

To(z) = {z, HPz) with HY = Dy(;,.)HD; (6)

p(z,z0)?
where H is the linear operator whose kernel is h(f1,t2), i.e.
(Hz)(t) = [, h(t,t') z(t') dt’, and (z,y) = f,z(t) y" (¢) dt.

Examples. For Dy = S,,, and 2z = (0,0}, (3) becomes
the TF-shift covariance Ts_ (¢, f) = Tz (t—7, f—v) and (4)

becomes Cohen’s class [1]-[3]

3Integrals are over the functions’ support.

4DP acts on a 2D function y(t1,t2) as (Dé9 y)(tl,tg) =
f"l ft,z Dg(ty,t,) Dj(ta,th) y(t],t)) dt) dty, where Dg(t,t') is the
kernel of Dy. For example, (Sg,, ¥)(t1,t2) = y(t1—71,t2 —7)
ed?2mv{t1=t2) and (C2, y)(t1,t2) = a.y(a(t1 —'r),a(tz—'r)).
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T=(t,f) =//2:(t1) z"(t2) A" (t1—t,t2—1) e_jzﬂf(tl_tz)dhdtz
t1vtg

7
For Dy = C,,r and 20 = (0, fo) (with fixed fo > 0), 233
becomes the time-shift /TF-scaling covariance Tc, ..t f) =

T: (a(t—r),f/a) and (4) becomes the affine class [4, 5)

Tz(t,f) = %//x(tl)x'(tg) h'(%(tl—t),;—o(tz—t))dtldtz

8
for f > 0. Further special cases of (4)-(6) are the hyperbo(liz
class and the power classes [6]-[9].

3 THE SEPARABLE CASE

The next theorem (obtained from (1), (2)) considers a sep-
arable DO that can be decomposed into two “partial DOs.”

Theorem 1. Let Dy with 8 = (o,8), D = Ax Bbea
DO with identity parameter 8y = (oo, So), and define 6, =
(a, Bo) and b = (ao, §). I

O 00 =6, 05,0608, = 05,2 9

with @12 = a1 ® a2 and Bi12 = (1 * B2, where o and * are
commutative operations, then the following results hold:®
(i) The DO Dy can be decomposed as

0a100a; = bays

Dy =e70=%)B,A,

with the partial DOs (PDOs) Ay = Dg,, and Bg = Dg,,.
(ii) The PDO A, is a family of linear operators indexed by

the 1D displacement parameter o € 4 with 4 CIR. A, is
unitary on X and satisfies the composition law

AazAal — eJo(onl yoag) A&l.az ,

where A and e form a commutative group with identity ele-
ment ag. Analogous results hold for the PDO Bg.

(i) The DF of Dy can be decomposed as d(z,§) =
d? (dA(z, a), ,B) with the partial DFs d(z,a) = d(z,8a) and
d®(z,B) = d(z,6p).

In the following, we assume o(fu,,0a,) = 0(03,,83,) =0
so that Aa,Ac; = Aajea, and Bg,Bg, = Bg,.3,.

Eigenvalues and Eigenfunctions (10, 12]. The eigen-
velues ,\;‘, and eigenfunctions uZ(t) of Ao are defined by

(Aaud)(®) = M2 sub(®); (10)

they are indexed by a “dual parameter” & € A with A C IR.
The composition law Aa,Aa; = Agjea, implies ’\gxoaz.& =
M2, & 2&, 5, and the unitarity of A, implies [A25] = 1. It
follows [13] that & belongs to a commutative “dual” group
(A, ) and that there is Aﬁ,aliaz = /\ﬁ,&l AQ,&Z. These rela-
tions show that the eigenvalues must be of the form

,\g,& = 2T hala) Bal&) , (11)

where pa{aieas) = palor) + palaz), paloe) =0, pale™!)
= —pa(a), and fa(@18 &2) = fa(é1) +fa(G2), fa(@o) = 0,
Ba(@™') = —fia(6). This implies A2 s = M5, = 1 and

Aorg =M 5-1 = A%, Analogous results hold for B.
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5 Analogous results hold if 65 0 8, = 6.

A-Fourier Transform. Assuming suitable normalization
of the eigenfunctions uZ (t), it can be shown [10, 12] that any
z(t) € X can be expanded into the uZ (t) as

2= [ Xa@ud) 183(@)da = (X)), (12
A
with the A-Fourier transform (A-FT) [10, 12]

Xa(&) = (z,u5) = / o(t)ug"(t)dt = (Faz)(@. (13) -
t

1X4(&)|? is an energy density since L{ | X a(&)]2| (&) d& =
[, lz(®)[*dt = ||=||*. With (10), (12), and (13) we easily show

(Aa2)(®) = /,4 Ma (o) @ lE@lda. (19

Displacement Curves. The TF displacements produced
by a PDO A, are described by the partial DF 2’ = d4(z, a)
(see Theorem 1), which is short for t' = dfi(t, f;a), f =
d5'(t, f; ). For given z, the set of all 2’ = d* (2, ) obtained
by varying « is a curve C2 € Z that passes through z. This
curve will be called a displacement curve (DC) of the PDO

A.. The eigenequation (10) implies that A, does not cause a
TF displacement of uZ (t). Hence, uf(t) must be TF-localized

along a DG C2, where z is related to the eigenfunction indez
&. Two cases will be considered:

Case 1. The eigenfunction can be written as

u;ﬂ(t) — 'rg(t) 2T [ba(&@) ga(t)+va(t)] , (15)

where ba (@) and ¢ 4(t) are one-to-one functions and r2 (¢) =
Vb (&) ¢4 (£) /3, (&)| in order to be consistent with (12),
(13). Here, the DC C# is postulated to coincide with the
nstantaneous frequency

Vg (t) = ba(&) la(t) + Yalt) (16)

of ug (t), where z = (¢, f) in C2 is related to & in that z lies
on the instantaneous-frequency curve, i.e. f = vZ(t).

Case 2. The Fourier transform of 42 (#) can be written as
U,‘-:(f) — Rf-,‘(f) e~ i2m [ba(&) 2a(H+¥a(S)] , (17)

where ba(&) and ®4(f) are one-to-one functions and RZ (f)
= /|t (&) ®,(f)/i,(&)]. Here, C# is postulated to coincide
with the group delay

8(f) = ba(&) Ba(F) + ¥a(f) (18)

of uf(t), where z = (t, f) in C2 is related to & as t = 2(f).

Since in both cases the DC C2 is really parameterized by
&, we shall henceforth write CZ.

Examples. The DOs S, , and C,, , are both separable.
We have S;, = F, T, and Cq,r = T:L, with the time-shift
operator T, frequency-shift operator F,, and TF-scaling
operator L, defined by (T-z)(t) = z(t—7), (F.2)(t) =

z(t) e/>™, and (L, z)(t) = Va z(at) (a > 0).

T, is a “case-1 PDO” with (A,e) = (A4, = (R,+),
>\sz = g~i%r7f u}“(t) - ejzﬂft, 7 o= f pr(r) = -,
pr(f) = f, br(f) = f, ér(t) = t, and ¢r(t) = 0. The
DC CTy: (', f)=(t + 7, f) coincides with the instantaneous
frequency u}" (t) = f, and the T-FT is the Fourier transform,

Xr(f) = [, z(t)e” 7 tdt = X ().
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F, is a “case-2 PDO” with (A, e) = (4,3) = (R, +), AL,
=ej21rut, UtF(f) =e—j2"tf) v=t, I'I'F(V)=V’ ﬁF(t)=tr bF(t) =
t,®p(f)=f, and ¥r(f) =0. The DCCSy: (¢, f)=(t, f+v)
coincides with the group delay ¥ (f) =¢, and the F-FT is
the identity transform, Xr(t) =z(t).

L. (defined for analytic signals) is a “case-2 PDO” with
(A, 0) = (Ry,), (4,3) = (R, +), Ag,c = &%, UL(f) =
e=I2menlf/fe) ) /T for f > 0 (with fixed f, > 0), & = ¢,
pr(a) = Ina, fr(c) = ¢, br(c) = ¢, @1(f) = In(f/f+), and
.(f) = 0. The DC Cfy: (¥, f') = (at, f/a) coincides with
the group delay 7*(f) = ¢/f, and the L-FT is the Mellin
transform [6, 14, 11] X1 (c) = [~ X(f) 272U/ Fdf ) /F.

Furthermore, also the DOs underlying the hyperbolic and
power classes IG]-[Q] are separable.

4 MARGINAL PROPERTIES

We now consider a separable DO Dy = ¢ 7795 ByA,
where A, is a case-1 PDO and By is a case-2 PDO (analo-
gous results hold if A, is case 2 and By is case 1).

Marginal Properties and Kernel Constraints. The
marginal property associated to the PDO A, states that in-

tegration of a QTFR T:(t, f) over the DC CZ (the TF locus
of u2(t)) yields the energy density |X4(&)|? = l(z,ué)lzz
/ T.(tvd®) [F®] dt=1Xa@)1.  (9)

t
Similarly, the marginal property associated to Bg reads

/, T.(-2(1),5) [RED]) df =1 X B (20)

It can be shown that a QTFR T. (¢, f) covariant to the DO
Dy satisfies the marginal property (19) if and only if its kernel
h(t1,t2) (cf. (4)) satisfies the constraint

/ (D8 1y,20yh) (b1, 82) [rA ()] dt = ud (t1) ud" (82) (21)
t

with z(t) = (¢,v4(t)). Similarly, (20) holds if and only if
/f (D&, ;y.0H) (Fr.f2) [RE(D]df = UF () UE* (f2) (22)

with z(f) = (rf(f), f), where H(f1, f2) is the kernel in (5).

Examples. From (19), (20), the marginal properties asso-
ciated to T-, F,, and L, follow as [, T: (¢, f) dt = | X(f)I?,
[ T=(t, ) df = |=(0))*, and [, Tu(c/f, ) df/f = 1XL()I?,
respectively. For Cohen’s class (7), the constraints for the
T, and F, marginal properties follow from (21), (22), af-
ter simplification, as fth(tl —t,t2 —t)dt = 1 VYt1,t2 and
ff H(fi—f, fa—F) df =1 Yfi, fa, respectively. For the affine
class (8), the constraints for the L, and T, marginal proper-
ties follow as fo [;° H(fof1/f, fofa/ f) e™7*m1=19/1 gf /2
= e IEme /1) ) /1Ty and (f/fo) [, h(f(ti —t)/ fo, f(te
t)/ fo) dt = e?*" /1=t regpectively.

Localization Function. We now assume that the DCs
ca, Cg corresponding to a dual parameter pair 8 = (&, 3)
intersect in a unique TF point

z=1 (é) ,
which is short for t = I;(&,8), f = l2(&, 8). We shall call

’léé) the localization function (LF) of the separable DO Dy.
he LF is constructed by solving the system of equations

v(t) = f, 75 (f) = t for (t,f) = z [12]. We assume that,
to any z € Z, there exists a unique 6 = (&,B) such that
z = I(6). Hence, § = I"!(z) with the inverse LF [~!(z). The
marginal properties (19), (20) can now be written as

/B T, (18)) () df

|Xa(a)? (23)

/_ T (1(9)) n2(0) da = |X5(B)? (24)

A
. = ~\12 = = = \12
with m(8) = [r£(1(@0)]" | & 1), n2(8) = [BF (12(9))]
| & 12()|. With (15)-(18), it can be shown that
m(0) = |JO)/Ea@)],  na(8) = |[J6)/E=(B)] (25)
where J(f) = %L—‘%E‘ - %&z%ﬂl is the Jacobian of I(6).
Characteristic Function Method. Following [10, 11], a
class of QTFRs can be constructed as
To(2) = / 9(8) (z,Doz) A(1"*(2),6) df (26)
D
with a A B ! [
A(6,6) = X%s Ag 5 IHa(@) HB (B, 27
where g(8) = g{(a,B) is a kernel independent of z(t) and
<:L‘,Da a:) is the “characteristic function.” If

9(6a) = g(a, o) =1 and g(fg) = g(ao,B) =1, (28)

then T;(2) can be shown [10] to satisfy the marginal proper-
ties (generally different from (23), (24))

/_ 7. (19) 1A (B df = 1Xa(@)® (29)
B
/_ﬁ(z@) Fa@lda = IXs(DP.  (0)
A

5 THE CONJUGATE CASE

Two PDOs A, and Bg with composition laws Ag,Aq, =
Aqjeo, and Bg,Bg, =Bg, 44, are called conjugate [15] if®

(Bous)(t) = uben(t),  (Aaup)(t)=ul,,(8). (31)

This implies (FaBsz)(d) = (Faz)(aGeS ™) and (FaAaz)()
= (Fpz)(Bea™!). Furthermore, using (14) we can show

Theorem 2. Conjugate PDOs A, and Bg commute up
to a phase factor,

A.Bg =)} ;5BgAa, (32)

and their eigenvalues and eigenfunctions are related as
Aélﬁ = )\g,'a and <u2,u9> = /\55.

With (11), it follows that

/\2,& = eij'zw u(a) u(a) and /\/139,5 = Fitm ,‘(ﬁ),,(;;)‘

5Note that the groups and dual groups underlying Ao, Bg have
to be identical: (A,s) = (B,%) = (A,8) = (8,%). Furthermore,
the functions pa(-),uB(-),a(-), and fp(-) are all equal up to
sign factors, so that we will simply write u(-) in the following.
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We now consider the composite operator Dg = Dog =
BsA.. With (32), it is easily shown that Dy satisfies the
central DO composition property (1),

Dy, Dy, = ’\gz.lh Dojeas, 81082 (33)
as well as the relation
D;'D¢Dg = Mg Aj o Do (34)

Eq. (33) implies that the separability condition (9) is met
and that the group (D, o) is commutative, 81 0 62 = 82 0 6.
We conjecture that, in the conjugate case, the DF and LF

of Dy are related as d( (&, B); o, B) = I(&eB, Bea) or briefly
d(1(8),8) =1(§067) with 67=(a;8)7 £ (B,a). (35)

To motivate (35), recall that 2 = I(&, ) is the intersection
of v£(t) and 77 (f). With (10) and (31), (Dougd)(®) =

M s ufes(t) and (Douf)(®) = 225,

nals are located along the curves ug.ﬁ(t) and T;. o (), TE-

ug.a(t). These sig-

spectively, whose intersection is 2’ = I(& e 3, Bea). On the
other hand, since z’ has been derived from z through a dis-
placement by 6, there should be 2’ = d(z,6). This finally

gives d( &, B); a,ﬂ) =Il(a e 3,3 ). Note that the covari-
ance (3) can now be rewritten as

Tp,, (16)) = T=(1(fo677)) with 677 = (B Ye™).
Choosing, for simplicity, the reference TF point 2o in (4)-(6)
as zo = l{6p), (35) implies

1) = d(20,87) and p(I(8),20) =6".  (36)

Theorem 3. If Dy = BgA, is a separable DO with con-
jugate PDOs A, and By, and if (36) holds, then the Ds-
covariant QTFR class (6) equals the QTFR class (26). The
kernels h(t1,t2) in (6) and g(8) in (26) are related as

B, t) = / 4°(8) Dolts, t2) W () (B d6,  (37)
D

where Dg(t1,t2) is the kernel of the DO Ds.

Proof. The QTFR T:(z) in (26) can be written as T:(2) =
(z, HPz) with HPY = [ ¢"(6) (1"} (2), 8) Dy df. Compar-
ing with (6), it remains to show that

D,(:..0)H D;(luo) = /D 9" () A*(I7(2),6) Do d6

for all z. Setting z = I(6), using (36), and multiplying by
Dng and Dy from left and right, respectively, this becomes

H

/ g"(8) A°(6,6) D;; Dy Dyr df
D

/ 07 (6) A4 P IAZ 4[24 (@) 4 (8)] Do d
D

where (27) and (34) have been used. With |A\3;|> =
IAZ P = 1, we obtain H = [, ¢"(8) Iu'(e) ' (8)] Deds,
which is (37), and relates the kernels h(t1,t2) and g(a, 8)
independently of the external parameter 8. [ |

Theorem 3 states that the covariance approach and the
characteristic function method are equivalent in the conju-
gate case. Two important conclusions can now be drawn:

e The Dy-covariant QTFR class in (4)-(6) satisfies the
marginal properties’ (29), (30) if the simple kernel con-
straint (28) is met.

e The QTFR class (26) obtained with the characteristic
function method satisfies the Dg-covariance (3).

Examples. The PDOs T, and F, underlying Cohen’s
class (7) are conjugate. Hence, Cohen’s class can be con-
structed using either the covariance method or the charac-
teristic function method. It is S, ,-covariant and (assuming
that (28) is met) it satisfies also the marginal properties. An
analogous result holds for the hyperbolic class [6].

The PDOs L, and T, underlying the affine class (8) are
not conjugate. Hence, the characteristic function method
yields a class [11] that is different from the affine class and
that is not C,,.-covariant. Similarly, the power classes (7, 8]
are also based on non-conjugate operators.
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