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ABSTRACT

‘We propose a framework that unifies and extends the affine,
hyperbolic, and power classes of quadratic time-frequen-
cy representations (QTFRs). These QTFR classes satisfy
the scale covariance property, important in multiresolution
analysis, and a generalized time-shift covariance property,
important in the analysis of signals propagating through
dispersive systems. We provide a general class formulation
in terms of 2-D kernels, a generalized signal expansion, a
list of desirable QTFR properties with kernel constraints,
and a “central QTFR” generalizing the Wigner distribution
and the Altes-Marinovich Q-distribution. We also propose
two generalized time-shift covariant (not, in general, scale
covariant) QTFR classes by applying a generalized warping
to Cohen’s class and to the affine class.

1. INTRODUCTION

Quadratic time-frequency representations (QTFRs) have
been used successfully for the analysis of nonstationary sig-
nals [1]. Different QTFRs are best suited for analyzing dif-
ferent types of signals. These QTFRs can be classified based
on the set of properties they satisfy. Two major QTFR
classes are Cohen’s class of time-frequency (TF) shift co-
variant QTFRs (2, 1], and the affine class of time-shift and
scale covariant QTFRs [3, 4, 1. Recently, we have proposed
the hyperbolic class [5], and the power classes [6] which in-
clude the affine class. These QTFRs satisfy scale covariance
and a specific dispersive time-shift covariance. In this pa-
per, we propose a generalized QTFR class that unifies and
extends the existing scale covariant QTFR classes (7, 8].

2. GENERALIZED QTFR CLASS

The generalized class consists of all QTFRs, Tf)(t, f), that
satisfy the scale covariance property and the generalized
time-shift covariance property defined, respectively, as

Tt f) = T (at, f/a) 1)
T, f) = TO(t-cr(f).f), @)

where X(f) is the Fourier transform of a signal z(t), the
scale operator C, and the generalized time-shift operator

D, are defined as (Ca X)(f) = X(£)/+/lal and (D X)(f) =
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e~ it t(f/f) X (f) where f» > 0 is a fixed reference fre-
quency, £(b) is a given phase function that is assumed one-
to-one, and the group delay function, up to a factor ¢, is

1 ./ f ) , d .
n=7¢(5) wa €0 =g
Scale covariance is important in multiresolution analysis,
and generalized time-shift covariance is useful for analyzing
signals propagating through systems with dispersion char-
acteristics corresponding to group delays of the form cr(f).
Note that a specific QTFR class will be obtained for a spe-
cific choice of the basic group delay function 7(f) in (2).
It can be shown [6, 7] that a QTFR TS (¢, f) satisfying
the covariances {1)-(2) exists for a given phase function £(b)
(or, equivalently, group delay 7(f)) if and only if a “kernel”
T'r(c){b1,b2) can be found that satisfies the condition

§(aby)—€(abs) _ £(b1)=€(b2)
Cree)(bs, b2) Tafo) - Lr)(by, b2) TV (3)
for all b1, b2, a; this QTFR can then be written in terms of
the kernel I'p(q) (b1, b2) as

@ N Y A L f .
T'XG (t’f) = Ifl./—oo/:mFT(G)(f, f)X(fl)X (fz)
LS~ [e(4)-¢(#)] dfidfz . (4)

It can further be shown [9, 7] that condition (3) is satisfied
for arbitrary kernel I'yn(c)(b1,b2) if and only if the group
delay is a power function, which leads to the hyperbolic
class and the power classes [5, 6]. However, (3) is also sat-
isfied for the phase function £(b) = bInb (corresponding
to the group delay 7(f) = [1 + ln(f/f.)]/f-) and kernel
Tp, (b, b2)=[ 6(bs = A1 (u)) 6(b2 — A1(~w)) p(u) du with
M(u) = exp (1 + 2£5—) which defines the Bertrand P-
distributions {4]. Note that for this phase function,
T'p, (b1,b2) cannot take on arbitrary form, but it is param-
eterized by a real and even 1-D weighting function u(u).
Some important aspects of the generalized class follow.
Generalized signal expansion. The TF geometry un-
derlying the generalized QTFR class (4) is related to the
generalized impulse

L) = VD7 F), cer )

with spectral energy density |I.(f)|* = |r(f)| and group
delay cr(f). Note that generalized time-shifting a general-
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ized impulse I.(f) simply changes its parameter value, i.e.
(Deo I)(f) = Ioteo(f). If £(b) is one-to-one with domain
R and range R, then any finite energy signal X (f) can be
expanded in terms of generalized impulses,

X(f) = / " ox (@) L(f) de, 6)

—00

where the coefficient function px(c) is the inner product
0= [ xnm(g.

The coefficient function of a generalized impulse I.,(f) is a

Dirac delta function at c=cq, i.e. pr,, (¢} = 6(c — co).

Properties and kernel constraints. A list of desirable
properties which one might want generalized QTFRs to sat-
isfy, with corresponding kernel constraints, is given below:

P-1 Scale covariance:
T5E% (8, f) = T (at, f/a): always satisfied

P-2 Generalized time-shift covariance:

T(G) %t )= T)((G) (t —cr(f), f): always satisfied
P-3 Real-valuedness:
T (t,f) = T (6.6) if Tpee) (bube) =T (b2,b)

P-4 Energy distribution: [[ T{7 (¢, f) dtdf = [ |X(f)|df
if [ Tre(bb) |35 db=1 vf

P-5 Frequency marginal:
[T, ) dt = |1X(H)? i Tpee(b,b) = 8(b—1)

P-6 Generalized marginal: [T er(f), /)l (f)ldf=lpx (c)|?

if [Tpe(b ,%b)%m =1, Vf1, fo
P-T7 Frequency localization:
X(f)=6(—f) = T (t.)=58(~F) if Tpe (b,b)=56(b-1)
P-8 Generalized localization: T} (t, f)=|r(f)l6(t~er(f))
if [ Dpeoy( 2822, 46:2R)) 0 =lal, Ve, 3

= T /1g@(e,8))¢’ (b, - 8))|
where d(b, 3) = £~ (b+5), and the inverse phase function,

£71(b), is such that £(¢™1 (b)) = b.
Additional properties and constraints can be found in 7, 8].

Central QTFR. A “central QTFR” of the generalized
class can be defined as

QE(t, ) =1 / -

X(£98)) X" (£ o(~B)) T3P

|eWs@aa |,
(9(8)) €' (g(-8))
with g(8) = £€71(£(1) + £). The 2-D kernel of Q¥ (¢, f)
is Tgey (b1, b2) = €' (\/1brba]) | 6(E212FEC) — £(1)). The
central QTFR satisfies a large number of desirable proper-
ties such as properties P-1-P-5, and P-7; it will also satisfy
P-6 and P-8 when the phase function &(b) is a logarith-
mic or power function. The central QTFR simplifies to
the Wigner distribution (WD) [10] of the affine class when
£(b) = b and to the Altes-Marinovich Q-distribution of the
hyperbolic class [5] when £(b) = Inb.

3. GENERALIZED CLASS EXAMPLES
The generalized class in (4) depends on the specific group
delay 7(f) or, equivalently, phase function £(b), whose
choice is constrained by condition (3). Some important ex-
amples are discussed below which correspond to all phase
functions that satisfy (3) with arbstrery kernel L'r(q) (b1, b2).
These examples are summarized in Table 1.
3.1. Power QTFR Classes
The family of power classes, with real-valued power x#0,
are obtained with £(b)=¢.(b)=sgn(b)|b|” (where sgn(b) is
+1if >0, =1 if b < 0) and 7(f)=e(f)=(x/f)f/ f-|*"}
(6]. The power class QTFRs, T,((") (t, f), are scale and power
time-shift covariant as in (1)-(2) with the generalized time-
shift operator, D., simplified to the power time-shift opera-
tor DI defined as (DS X)(f)=e 727 U/1) X(f). Any
power class QTFR can be written in terms of an arbitrary
2-D kernel T (b1, 2) as in (4),

reen = o [ [ (% E) xw g

[ (B )""(‘f)]dfldfz,
The power impulse used in the signal expansion in (6) is

I =T (Dl e 7274+ (cf. (5)). The central QTFR
(7) of the power classes is the power WD, Qg}‘)(t, f), with
kernel '™ S0 (b1, b2) = |€% (/1b1ba]) | 6 (Saltarlf€aCa) _1) (6],
The power WD satisfies properties P-1-P-8. Other impor-
tant power classes QTFRs are the Bertrand P, -distributions
{4, 6] and the powergram [6, 7).

The power class QTFRs can also be obtained by ap-
plying a unitary warping [6, 7, 11, 12] to the affine class
QTFRs, T()(t, f), (see Subsection 3.2)

1000 = Tk (g F6(£) @

where W X)(f) = X (£- &' (F)) /\/: Ir< (£ &' ()]

is the power warped signal. For example, the power WD
and the powergram are the warped versions of the WD
and the scalogram of the affine class, respectively [6]. The
warping converts the scale and non-dispersive time-shift co-
variances of the affine class to the scale’and power time-
shift covariances of the power classes, respectively, since
WilS. 5. We = DI and WZ'Cq, (ayWn = Ca, where the
time-shift operator is defined as (S;X)(f)=e 2"/ X(f),
and W7! is such that (W7 W X)(f)=X(f).

3.2. Affine QTFR Class

The affine class [3, 4] is the power class when x=1; it is ob-
tained from the general framework with £(b)=¢;1(b)=b and
constant group delay r(f)=71(f)=1/f-. The affine QTFRs,
T,((A)(t, f), are scale and constant time-shift covariant as in
(1)-(2) with the generalized time-shift operator D. reduced
to the conventional (non-dispersive) time-shift operator S;.
Any QTFR of the affine class can be written in terms of an
arbitrary 2-D kernel T (b1, 52) [3] as (cf. (4))

o[ [ () xex

T(A) (t,f) =
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QTFR class:

Generalized class Power classes Affine class Chirp class Hyperbolic class
T (¢, f) U CY)) T30(t f) T f) T3t )
phase function, £(5): £(b) as in (3) £(b)=sgn(bd) |b]* b sgn(b) |b]* Inb
group delay, 7(f): (f) (=% |L£|"" 1/f 214 1/f
covariances e scaling, C, e scaling, C, e scaling, C e scaling, C, e scaling, C,
with respect to: e generalized ® power e constant e chirp e hyperbolic
time-shift, D, time-shift, DI | time-shift, S,,;, | time-shift, D{? | time-shift, H.
central QTFR: generalized WD power WD WD chirp WD Q-distribution
Yt f) S U)) Wx(t, ) 2t 5) Q1)

Table 1: Generalized time-shift covariant and scale covariant QTFR classes, their corresponding phase and group delay

functions, pair of covariance properties, and central QTFR.

. dtlf1-fa) dfidfa.
The central QTFR (7) of the affine class is the WD [10, 1]

Wi(t, f) =/_:X(f+ 3) x-(1-

with kernel I‘(A)(bl, ba)= 6( - 1)

3.3. Chirp QTFR Class

The chirp class is the power class when k=2, and the gener-
alized class with quadratic phase £(b) = Ez(b) = sgn(b) |b|?
and linear group delay 7(f) = 72{f) = 2|f|/f2. The chirp
class QTFRs, T(z)(t f), are scale covariant and chirp time-
shift covariant. The chirp time-shift operator y2 produces
time delays that are proportional to |f|. The central QTFR
(7) of the chirp class is the chirp WD, Q(z)(t, f), obtained
with kernel (s, (b1, ba) = 24/[b16a] 6 (52&a2aCa) _ ),

%) ej21rtv dv

3.4. Hyperbolic QTFR Class

The hyperbolic class is the generalized class with £(b) =Inb
and hyperbolic group delay 7(f) = 1/f [5]. It is defined for
analytic signals (i.e., X(f) = 0 for f < 0). The hyperbolic
class QTFRs, T,((H )(t, f), are scale and time-shift covariant
as in (1)-(2) with the generalized time-shift operator D,
simplified to the hyperbolic time-shift operator H. that is
defined as (D.X)(f) = (HX)(f) = e i2mel/f) x ().
The hyperbolic class QTFRs can be written in terms of an
arbitrary 2-D kernel T'{)(by,b,) as (cf. (4))

en = 3 [ o E) xexe

LS afdf, >0
The hyperbolic impulse, used in the signal expansion in

8), is L(f) = (1/V e U/ 5 > 0 (cf (5)).
The central QTFR (7) of the hyperbolic class is the Altes-
Marinovich Q-distribution [5]

P, )= /

with kernel (), (b1, b2) = 28(In(b162))/v/biba. The Q-
distribution satisfies properties P-1-P-8.

The hyperbolic class QTFRs are also obtained by warp-
ing Cohen’s class QTFRs, T(C)(t f), according to [5]

Ty‘fgx(;f, frlnj{;) f>0 )

feﬁ/2 (f 6—5/2) eI2mtiB dg

T, f) =

with the warped signal (W X)(f)=Ve//f X (f.ef/5),vf.
This warping changes the constant-bandwidth nature of
Cohen’s class QTFRs [1] to the constant-Q nature of the
hyperbolic class QTFRs [5]. For example, the WD and
spectrogram of Cohen’s class map to the Q-distribution
and hyperbologram, respectively, of the hyperbolic class
[5]. The warping maps the time and frequency shift co-
variances of Cohen’s class to the scale and hyperbolic time-
shift covariances of the hyperbohc class, respectively, since
Wg'Se/ s, Wra=H. and W' My, 1na Wir=C, where the fre-
quency-shift operator is deﬁned as (M, X)(f)=X(f-v).

4. GENERALIZED TIME-SHIFT COVARIANT
QTFR CLASSES

The generalized QTFR class discussed so far is axiomati-
cally defined by the scale covariance property (1) and the
generalized time-shift covariance property (2). However,
the admissible phase functions £(b) are restricted since con-
dition (3) must be satisfied. If scale covariance is not of in-
terest, and only generalized time-shift covariance is impor-
tant, then other QTFR generalizations are possible [7, 8].
We can obtain generalized time-shift covariant QTFRs by
warping Cohen’s class or the affine class' using

00 = 15 (7 #6(F)) @
where the generalized warping operator W is defined by

WX)N=X (167 (£ A/#- |7 (5-6-2(F)) The QTFR
class, (class), which undergoes the warping is either Co-
hen’s class, (C), or the affine class, (A). It is transformed
either into the QTFRs T,((WC)(t, f) (warped Cohen’s class)
or T}w“)(t, f) (warped affine class), respectively, both of
which satisfy the generalized time-shift covariance (2). In
(10), the phase function £(b) need not satisfy condition (3).
The generalized time-shift covariant QTFR classes thus ob-
tained are discussed below and summarized in Table 2 [7, 8).

‘Warped Cohen’s class. By warping the QTFRs of Co-
hen’s class, T,((c)(t,f), using (10) with (class)=(C), we ob-
tain the generalized time-shift covariant QTFRs

T, ) = / - / T oM )

1Unitary warpings from Cohen’s class or the affine class have
been proposed in [11, 12]. Here, we consider the special case of
warpings that lead to generalized time-shifts.
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Warped affine class,
T (¢, f)
covariances w.r.t.:
o warped scaling,

Warped Cohen'’s class,
Ty Ot f)

covariances w.r.t.:

e warped frequency

shift, WM, W wTlicaw
¢ generalized time ¢ generalized time
shift, D, shift, D,

Prominent example: Prominent example:
Hyperbolic class Power classes

£(b) =Inbd, 7(f) = 1/f | £(b) = &x(b), T(f) = Tx({)
Table 2: Generalized time-shift covariant classes, obtained
by warping Cohen’s class or the affine class.

-¢§~W°’(ﬁn T(f),s(f) £(£))dtdf (11)

Here, 1/1(Wc) (c,b) is a 2-D kernel characterizing 7", and

(w)(t f), the generahzed time-shift version of the WD
(obtained by warping the WD using (10}), is given by

Q¢ = / mX(frrf(f,ﬂ)) X*(f-d(f,-B)

T i ag (12)
Ve ) e (s, -m)|

where d(f,8) = ¢! ( ( -) + E) The generalized warped

WD, Q(w)(t f), in (12) is a member of the warped class
(11) with kernel 1/;gvc)(c, b) = 6(c)6(b). It is generally
different from the generalized WD ng)(t, f) in (7) but
coincides with QSC’(¢, f) for £(b) = £«(b) or £(b) = Inb.
Hence, both Q(w)(t, f) and Qg?)(t,f) simplify to the WD
when 7(f)=1/f-, to the Q-distribution when r(f)=1/f,
and to the power WD when 7(f)=7.(f) [7]. The general-
ized warped WD, Q(W)(t, f), satisfies properties P-2-P-8.
The warping in (10) maps the non-dispersive (i.e. con-
stant) time-shift covariance of Cohen’s class to the general-
ized time-shift covariance since W™'S,,;, W = D. [7, 8, 11].
However, it does not map the frequency-shift covariance of
Cohen’s class to scale covariance, except when the group
delay is hyperbolic, 7(f)=1/f. Hence, the warped Cohen’s
class in (10) coincides with the hyperbolic class in (9) when
(class)=(C), &(b)=Inb, 7(f)=1/f, and W=Whg.

Warped affine class. By warping the QTFRs of the affine

class, T}A)(t, f), using (10) with (class)=(A), we obtain the
generalized time-shift covariant QTFRs

T 1) = / / QW )

way[ (L t ot BN oz
T (E(ff)(f(f) T(f)) (,,))d‘df' (13)

Here, 1/:(WA )(c, b) is a 2-D kernel characterizing TW4), and
(W)(t f) is the warped WD in (12) with kernel ¢(WA)(c, b)

= §(c)6(b—1). Note that we obtain the same Qx )(t, f) as
in the warped Cohen’s class since the WD is a member of

both the affine class and Cohen’s class. Hence, Q&W)(t, f
is a member of both classes (11) and (13).

The warping in (10) maps the non-dispersive time-shift
covariance of the affine class to the generalized time-shift
covariance. However, it does not preserve the scale covari-
ance property of the affine class, except for power group
delays 7(f) = 7 (f) = (x/ f+) | f/ f-|*~". Hence, the warped
affine class in (10) coincides with a power class in (8) when
(class)=(A), £()=¢x(b), T(f)=7<(f), and W=W..

5. CONCLUSION

We proposed a generalized QTFR class that consists of all
scale covariant and generalized time-shift covariant QTFRs.
These QTFRs depend on a given group delay 7(f) or, equiv-
alently, a given phase function £(b). The phase function is
constrained to satisfy condition (3). The generalized class
framework unifies the power classes (including the affine
and chirp classes) and the hyperbolic class (see Table 1).

We also proposed QTFR classes that are generalized
time-shift covariant but, in general, not scale covariant (see
Table 2). These QTFRs depend on an arbitrary group de-
lay and a corresponding phase function, and are obtained
by warping Cohen'’s class or the affine class. Using the gen-
eralized warping with a hyperbolic group delay, Cohen’s
class is mapped to the hyperbolic class, and with a power
group delay, the affine class is mapped to the power classes.
Thus, the hyperbolic and power classes are the special cases
where both generalized class frameworks coincide.
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