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ABSTRACT

It is generally stated that the conditional mean fre-
quency of a time-frequency distribution (TFD) should
equal the instantaneous frequency of the signal. The com-
monly accepted definition of instantaneous frequency as
the derivative of the phase of the analytic signal sometimes
leads to curious results. Although it is commonly held that
positivity of the TFD and satisfaction of the so-called
“instantaneous frequency constraint” are generally incom-
patible, we show that one can always find a complex
signal, the real part of which is the given signal, for which
the derivative of the phase is consistent with the marginals
and positivity. Furthermore, for the cases considered, the
derivative of the phase of this signal, which by design
equals the conditional mean frequency of a positive TFD,
is a reasonable, readily interpretable choice for instanta-
neous frequency.

INTRODUCTION

Instantaneous frequency is a fundamental concept not
only in communication engineering (i.e., frequency modu-
lation), but also in nature (e.g., light of changing color).
Many definitions have been given (e.g., see [11], [14]), but
it is commonly accepted that instantaneous frequency is
the derivative of the phase of the signal.

One of the earliest methods for obtaining the phase of
a signal was the quadrature method, which forms the com-
plex signal z(r) = A(r)&/®® from the real signal
s() = A()cos(¢(r)) . From the complex signal, the
phase is readily obtained, and the instantaneous frequency
is defined as ¢ (f) = =9 (+) . The quadrature method,
however, begs the issue, because it requires that we first
write s(r) as A (¢) cos (¢ ()) , and there are an infinite
number of possibilities for A (+) and ¢ (¢) . Gabor pro-
posed a method for unambiguously defining the amplitude
and phase by generating a specific complex signal, namely
the analytic signal, from the given, real signal (8).!

Sometimes the instantaneous frequency, defined as
the derivative of the phase, presents paradoxes that are dif-
ficult to reconcile with the physical nature of the signal and
spectrum. For example, the derivative of the phase of the
analytic signal can be negative, yet there are no negative
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frequencies in an analytic signal. More generally, the deriv-
ative of the phase of a complex signal (not necessarily ana-
lytic) can be outside the bandwidth of the signal. It is
perplexing and difficult to understand how the “instanta-
neous frequency” of a band-limited signal can be outside
the band. See [4] for discussion of some other paradoxes of
instantaneous frequency.

In the time-frequency literature, instantaneous fre-
quency is interpreted as the average frequency at each time
[3]. The average frequency at each time is calculated from
the time-conditional frequency distribution P (w|t) of the
signal as?

(o), = JmP(m|t)dm = 1—7—%—5'[(:)P(t, w)do, €))]
where p (£) = JP (t, w) do is the time marginal of the joint
time-frequency distribution P (¢, ) . It is generally stated
that this conditional moment should equal the derivative of
the phase of the complex (typically analytic) signal,

@

The constraint on the distribution necessary for eq. (2)
to hold is well known [2b], and an infinite number of distri-
butions yield this result for any complex signal, not just the
analytic signal [3]. This result suggests that time-frequency
distributions offer a general approach to defining instanta-
neous frequency [2a]. At the very least, it certainly gives
pause to insisting a priori on a particular form for the com-
plex signal. If the derivative of the phase of a particular
complex signal is difficult to interpret as “the average fre-
quency at each time,” for example, when it extends outside
the bandwidth of the signal, why insist that the TFD yield
this result for the conditional mean frequency?

It has been stated that positivity of the distribution is
generally incompatible with eq. (2) [2b]. However, as we
show in this paper, one can always find a complex signal

(), = §(1) .

1. We note that although the quadrature method does not gener-
ally yield an analytic signal, in many cases the signal obtained is
approximately analytic; this is so when the spectrum of the com-
plex signal obtained via the quadrature method has very little en-
ergy for frequencies ® <0 [12], [13].

2. Unless otherwise noted, integration spans (—eo, ).
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for which the derivative of the phase equals the conditional
mean frequency of a positive TFD. Furthermore, the deriv-
ative of the phase of this signal is a reasonable definition of
instantaneous frequency. For example, the distribution
P(rw) = (L/m)e @~ (©=2%=B¥e o the signal 7 (1) =
(a/m) /4421 (00t +B2/D garicies eq. (2) [3]. Like-
wise, the distribution P(t,0) = |z(£)|%]Z(w)|?, where
Z(w) is the Fourier transform of signal z (r) , satisfies eq.
(2) for z(1) = A (1) ™" [6].3 Neither of these signals is
necessarily analytic (the spectrum is not necessarily zero
for @<0), yet in each case the derivative of the phase is
reasonable and sensible as the “instantaneous frequency”
of the signal. The TFDs are sound as well, in that they are
nonnegative and yield the correct marginal densities. They
belong to the class of positive distributions introduced by
Cohen with Zaparovanny and Posch [6], [7].4

We explore these issues further in the remainder of the

paper.
EXAMPLES AND RESULTS
Consider the two-tone signal

s(n) = Alej“)‘-'+A2ei°’2‘ = A(De?® (3)

where A, A, arereal constants. Note that this signal is ana-
lytic if ®,, @,>0. The derivative of the phase, which we
take as the instantaneous frequency of the signal, is readily
calculated as (4], [5]

. 1 1 Aj-4p
o(n = Q(mz'”‘)l) +§(0)2—0)1)72(—t) )
where
A2() = A2+A2+2A (A cos ((0— @) 1) (5)

The only case for which the instantaneous frequency
does not extend beyond the tones at ®, and w, is when the
tones are of equal strength, i.e., for |A1| = |A,| , as we now
prove. For the instantaneous frequency ¢(s) to remain
bounded by ®, and w,, we require

2 2
AZ _Al

<1 (6)
A2+A2+24 A c05s ((0,-0))1)

or equivalently
A?+A A cos ((w,—®;)1) 20 and
AZ+A A cos ((0y-@)1) 20. N

The cases A; >0,4,>0,and A; <0,A4,<0 yield

3. Unit-energy signals are assumed. Amplitudes A (¢) are real.
4. Throughout the paper, by “positive distribution” or “positive
TFD,” we mean the distributions of Cohen, Posch and Zaparovan-
ny. Thus, a spectrogram, although positive, is not a positive distri-
bution in this sense because it does not satisfy the marginals.

A, _

;—2 z—cos ((0,-w;)?) and

A

;%z-cos((mz—m,)z) (8)
1

The cases A, >0,A,<0 and A; <0,A,>0 resultin

1
Z;S—Cos ((0,-0)1) and

Z—?S—cos((mz—mx)t) 9)
The only solution to egs. (8) and (9) is |A1| = [Azl. For
unequal strength tones, ¢ () is erratic and not amenable to
interpretation as the average frequency at each time; see the
dotted line plotted in figure 2b, for example.

Now let’s consider three different TFDs of this signal.
Shown in figure 1 are a time-conditional spectrogram, a
time-conditional Choi-Williams distribution [1], and a
time-conditional positive distribution, obtained via the
method of [9], for the two-tone signal with |A1| # |A2| . We
plot the conditional distribution in each case because that is
the distribution from which one calculates the conditional
mean frequency — see eq. (1). As is well known, the spec-
trogram is nonnegative, but does not yield the correct mar-
ginals; the Choi-Williams TFD yields the correct
marginals, but goes negative; and the positive TFD is non-
negative and yields the correct marginals.

Of the three distributions, the positive TFD is arguably
the best measure of the time-frequency energy density of
this particular signal. Unlike the other two, it indicates that
the signal was a sum of two constant frequency tones, it is
nonnegative (as any energy density should be), and the
joint density yields the correct marginals (as any joint den-
sity should). Furthermore, for |A1| = |A2 , the conditional
mean frequency of the distribution equals the derivative of
the phase (see figure 2a), which in this case is the average
of the two tones. The TFD in figure 1(c), which is the dis-
tribution for |A | #|4,| , likewise yields a weighted average
of the two tones for (w),, consistent with the result for
1A1| = |A2] . See figure 2a,b. That this result does not equal
@ (¢) in this case should be no cause for alarm, as we
already know from above that ¢ (r) behaves oddly for
|A,|# |A2| (see figure 2b). Why insist, then, that an other-
wise perfectly reasonable distribution yield this result for
the conditional mean frequency?

No positive TFD, including the one shown in figure Ic,
can ever yield ¢ (¢) for (w), if ¢ (r) extends beyond the
bandwidth of the signal, because such a result conflicts
with positivity and the frequency marginal [2b], [4], [9]. To
see this, consider a signal whose spectrum is zero outside
the interval ,<®o<a,, but whose instantaneous fre-
quency is not zero outside this interval. The conditional
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average over frequency of a positive TFD will equal this
instantaneous frequency only if the distribution has non-
zero mass centered about the instantaneous frequency
curve in the time-frequency plane. But such a requirement
conflicts with the frequency marginal, which requires that
the positive TFD be zero outside the interval o, <o <®),.

There are many signals for which a positive TFD
yields ¢ (r) for {w),, as shown in figure 2 for’

2() = e2m6P (10)
2 = & ()

() = 205 (12)

2(1) = ef2R(BR+1283-558) (13)

Furthermore, given a signal and a positive TFD of the
signal, it is simple to find a complex signal such that eq. (2)
holds for the positive TFD calculate {w), from a positive
TFD of the given sxgnal then integrate it to get a phase

o) = [(a)dr. (14)

Take the amplitude as
A1) = s(1)/cos (9 (1)) (15)

to obtain the complex signal. By design, the real part of this
signal equals the real part of the given signal s(r) , and the
derivative of the phase of this signal equals the conditional
mean frequency of the positive TFD of the given signal.

Di1SCUSSION AND CONCLUSION

As commonly defined, instantaneous frequency 1s the
derivative of the phase of a complex signal. Nature gives us
real signals; going from a real signal to a complex signal is
a one-to-many mapping, in that there are an infinite number
of complex signals whose real part is the given real signal.
In other words, there are an infinite number of possibilities
for the amplitude and phase of the complex signal.

Although Gabor proposed a method for unambigu-
ously defining the amplitude and phase from the given real
signal, namely via the analytic signal, the derivative of the
phase of the analytic signal often behaves erratically and
yields results that are difficult to interpret as the “average
frequency at each time.” Sometimes the analytic signal

5. For computational purposes, the signals were discretized by
taking ¢ = nT, where n is anintegerand T is a sampling period.
The instantaneous  frequency was  calculated as
(p (t) [ = a7 and the conditional mean frequency was computed
via the mcthod of Lovell et al. [10].

6. If the given signal is real, calculate {w) ; as aone-sided condi-
tional average to obtain a conditional mean frequency different
from zero; i.e., (W), = 2[[ oP(o|ndo = (m) Or, use the
analytic signal and 1ts positive TFD, and proceed as outlmed

gives sensible results, consistent with positivity and the
marginals (e.g., figure 2a), but sometimes it doesn’t (figure
2b).

The results presented here suggest that an alternative
approach to defining instantaneous frequency may be
fruitful. Rather than letting ¢ (¢) dictate what () , should
be, the converse approach should be taken. That is, the
approach has traditionally been to decide beforehand on a
particular complex signal, and then insist that the TFD
yield ¢ () for (w),. Instead, we suggest that (w) ,-be cal-
culated from a sound TFD, namely one that, at the very
least, is nonnegative and yields the correct marginals. That
then dictates the phase of a particular complex signal, per
eq. (14). As shown, using this approach one can always find
a complex signal for which eq. (2) holds for the positive
TFD. Of course, then the issue is one of finding the sound
TFD, but that has always been one of the fundamental goals
of time-frequency analysis. It remains an unsolved
problem. When a complete theory for TFDs is found, the
definition of instantaneous frequency will follow naturally.
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Figure 1: The time-conditional distributions of a two-tone signal (eq. (3)) for (a) a spectrogram, (b) a Choi-Will-
iams distribution and (c) a Cohen-Posch (i.e., positive) distribution. The conditional mean frequency is a weighted
sum over frequency of the conditional distribution — see eq. (1). The amplitudes of the tones are A;=1.2, A,=1.
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Figure 2: The conditional mean frequency calculated from a positive TFD (solid line) and the instantaneous fre-
quency (dashed line) for several different signals. The signals are (a) two tones of equal amplitude (eq. (3)); (b) two
tones of different amplitude (A;=1.2, A,=1) (eq. (3)) (c) linear FM (eq. (10)); (d) quadratic FM (eq. (11)); (e) cubic
FM (eq. (12)); polynomial FM (eq. (13)). Except for slight computational edge effects, the conditional mean fre-
quency equals the instantaneous frequency in (a), (c)-(e), and shows close agreement in (f). For the signal where the
two differ, namely (b), the instantaneous frequency extends outside the spectral bandwidth of the signal; the condi-
tional mean frequency, on the other hand, does not and it is consistent with the interpretation of “average fre-
quency at each time.” For the two-tone signal in (a) and (b), the case of equal magnitude tones is the only one for
which the instantaneous frequency does not extend outside the bandwidth of the signal. The effect of changing the
amplitudes of the tones has a consistent effect on the conditional mean frequency of the positive TFD, in that it
remains a weighted average of the frequencies present at each time, moving from the average of the tones when the
amplitudes are equal in (a) towards the tone of larger magnitude in (b). The instantaneous frequency, on the other
hand, is quite erratic as one tone becomes stronger than the other. One can always find a complex signal for which
eq. (2) holds for any positive TFD — see text for details.
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