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Abstract

We present a general approach to approximating positive
time-frequency distributions (TFDs) through nonlinear combi-
nations of spectrograms. Closed-form solutions for the combina-
tions are obtained via optimization of entropy functionals
subject to an energy constraint. We apply two such combinations
to generating approximate TFDs for whale sounds and speech.
Through these applications, it can be seen that these methods
give results superior to that achieved with individual spectro-
grams, and remarkably close to the positive TFDs obtained via
computationally-intensive methods.

1. Introduction

Joint distributions, particularly time-frequency distribu-
tions (TFDs), continue to be an important tool in signal analysis,
especially where nonstationary signals are involved (e.g., bio-
medical signals). Among the many possible distributions, the
positive time-frequency distributions of Cohen (with Zaparo-
vanny {5] and Posch [4]) have received renewed interest [9],
[12], [13], [14], [15], [16]. Finch and Groblicki have shown that
the Cohen-Posch-Zaparovanny formulation includes all positive
distributions with the correct marginals [8]. These distributions
are particularly appealing from a theoretical viewpoint, as they
satisfy the marginal conditions and they are everywhere nonneg-
ative, unlike the well-known bilinear distributions [4].

From a practical viewpoint, the utility of positive TFDs has
recently been demonstrated in the analysis of speech [15], rotat-
ing machines [13}, and heart sounds [1]. Methods for construct-
ing positive TFDs have been developed by Loughlin et al. [12],
[13], and Pitton et al. [15], [16]. The methods are similar in that
they involve the optimization of an entropy criterion, subject to
integral constraints. Fonollosa and Nikias recently proposed
additional constraints [9].

A potential limitation in the practical application of these
methods for generating positive TFDs is that, despite iterative
algorithms, these methods can become computationally prohibi-
tive, especially for large data records (e.g., thousands of data
samples). Fast approximations may suffice in many cases. Cun-
ningham and Williams [6] have investigated sums of spectro-
grams as fast approximations to bilinear TFDs. Frazier and
Boashash have considered “ad hoc” [10] combinations of
smoothed Wigner distributions to obtain nonnegative TFDs. In
this paper, we explore some optimal spectrogram combinations
for approximating the positive TFDs Cohen, Posch and Zaparo-
vanny [4], [5].
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2. Background

All time-frequency distributions can be obtained from
Cohen’s general formulation [2], [3]:

C(tp = m's(um/z)s*(u—r/z)x

O (M, Tt f, 5 (1)) &/ 2F (M W=0 =f0) dudrdn ¢))
where ¢ is a kernel that determines the particular distribution.
As Cohen noted [2], [3], the kernel can be functionally dependent
on time, frequency and the signal, as explicitly denoted. The par-
ticular case of signal-independent kernels corresponds to the sub-
class of “bilinear distributions,” which have been extensively
studied (see [3] and references therein).

. The positive, marginal-satisfying TFDs of Cohen, Posch
and Zaparovanny [4], [S] can be written in terms of the “bilin-
ear” formulation above, with signal-dependent kernels. A more
tractable formulation for the positive TFDs is [3], [4]

P(1,£,2) = Is(PS N12Qu (1) v (N 35 (1)) @
where Q(u,v) is a nonnegative, unit area function that can be
functionally dependent on the signal. As shown by Cohen (3], it
is mathematically simple to choose Q(u,v) such that the distribu-
tion is positive and the marginals are satisfied.

As with the bilinear distributions and the choice of ¢,
there are an infinite number of choices of Q for a given signal.
The known constraints, i.e., positivity, marginals, conditional
moments (e.g., instantaneous frequency), are not sufficient to
uniquely fix the choice of Q (or ¢ for that matter). The prob-
lem of determining a distribution given conditions that do not
uniquely fix the distribution is common in many fields (e.g.,
chemistry, astronomy). One method of solution is maximum’
entropy, or more generally, minimum cross-entropy, estimation.
This approach has recently been applied to generate positive
TFDs for any signal [12],[13],[15],[16]. The method is straight-
forward in concept and implementation: make an initial edu-
cated guess P (¢, f) >0 at the unknown distribution, and then
find the distribution P (¢, f) that minimizes the cross-entropy

AH (P, Py) = [[P(11)log F ((‘;ff)) drdf 3
0 £

subject to the marginal constraints and possibly others
([13],[15]). The solution can be obtained iteratively. If only the
marginal constraints are imposed, the iterations are

(k+1) _ s l®
PTG = PO G TGS (42)

(k+2) (k+1) Is (1)1
PR = PTT T s (4b)
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where k = 2i,ie {0,1,2,..} and

PO () = Po(t.) (4c)
pk+D (1) = [P+ (1, f) df (4d)
p® () = [PB (1 fdt (4e)

and S (f) is the Fourier transform of the signal s () .

The initial guess, or “prior” P, (1, f), can be a spectro-
gram, for example, or a combination of spectrograms where
each spectrogram is calculated with a different, unit-energy
window [13]. In this paper, we examine different combinations
of spectrograms and show that sometimes the combined prior is
good enough to get a quick sense of the underlying distribution.

3. Optimal Combinations

We examine three combinations, each of which optimizes
an entropy-based measure, subject to an energy normalization
constraint. Let IT, (4, /), II, (4 f) and I, (1, /) be the func-
tions that are closest to a set of N spectrograms

{S;(tNH:ie (1,.,N),N22} in minimum mean cross-
entropy, minimax cross-entropy, and minimum mean Itakura-
Saito distance, respectively. Furthermore, let the total energy of
each I, (¢, f) equal that of the given signal. Mathematically,

M, () = argmin %Y AH (Py ) )
Po(tf) N5
I, (t,f) = argmin max AH (P, S)) (6)
Po(tf) i
1
I,(6f) = argmin < d;¢(Pg, S) )
3 Py (t,f) N; e

subject to the energy constraint

0, (en], = ”H,- (1, f) drdf

= [ls(n2dr = [Is12df = E, ®)
where
T Poleh  Po(nf)
dis (P S) = | .[(s(.)(:f) - ogs‘_’(tﬂ —l]dtdf ©

is the Itakura-Saito distance measure [11], which has been previ-
ously used to combine estimates of the evolutionary spectrum
[7]. Solving each of these constrained optimizations via the
method of Lagrange multipliers yields (141!

E

0, (.f) = b [[45GD 10
! "HN/Si(t,f) 1,—[
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1. The Itakura-Saito combination derived in [7] was an uncon-
strained optimization, normalized after the fact. Taking the en-
ergy normalization into account in the optimization itself
yields eq. (12), which is readily derived by following the pro-
cedure in [14], using the Itakura-Saito distortion measure.

min S.(t, f) (11)

nz(taf) =
'mg‘n Si(t,)‘)“1 t
i

N -1
I, (1) =($Zﬁ”‘] (12)
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where || ||, denotes the L, norm, and in the last equation, A is
a Lagrange multiplier that must be chosen to ensure that the
energy constraint is met (i.e., eq. (8)). Unlike the other two com-
binations, the Itakura-Saito combination may not be nonnegative,
since A may take on negative values, which could drive the solu-
tion below zero. We focus our attention on applying the nonneg-
ative combinations in equations (10) and (11).

4. Examples

Figure 1 illustrates various positive time-frequency repre-
sentations for a recorded whale sound. Figure 1a shows a posi-
tive (Cohen-Posch) density obtained via deconvolution [15].
Close examination of this figure reveals three closely-spaced
frequency components in the mid-frequency range. Figures 1b
and Ic illustrate wideband and narrowband spectrograms,
respectively. The wideband spectrogram shows the temporal
detail, while the narrowband spectrogram resolves the three
components. Figures 1d and le show the combined spectro-
grams, which are better approximations to the joint density in
figure la than is either spectrogram; figure 1d is the MMCE
combination of the two spectrograms, and figure le is the mini-
max cross-entropy combination. Both approximations simulta-
neously resolve the temporal structure and all three frequency
components.

Figure 2 compares the results of these techniques when
applied to speech. Figure 2a illustrates a Cohen-Posch TFD for
this signal, obtained via deconvolution. Figures 2b and 2c show
wideband and narrowband spectrograms, respectively, of the
signal. The wideband spectrogram resolves short-duration
events such as plosives (e.g., just after 5.3 seconds), and shows
the time variation of the individual formants. The narrowband
spectrogram resolves the individual harmonics of the fundamen-
tal frequency, but smears out the transient events. The combina-
tions of equations (10) and (11) are shown in figures 2d and 2e.
Both methods simultaneously resolve the temporal and spectral
structure observed in wideband and narrowband spectrograms,
providing representations similar to, though less sharp than, the
TFD of figure 2a.

5. Discussion and Conclusion

With the advent of positive TFDs and general methods for
constructing them, it is no longer necessary to compromise and
accept negative-valued “energy” density functions that satisfy
the marginals (e.g., the Wigner distribution), or nonnegative
densities that fail to satisfy them (e.g., the spectrogram). The
continued development of methods for generating or approxi-
mating positive TFDs in a quick and efficient manner opens up
new avenues for analysis of nonstationary signals. Fast approxi-
mations are of particular benefit in the initial exploratory phases
of applications where large amounts of data need to be pro-
cessed.
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Figure 1: (a) Cohen-Posch TFD of a whale sound; (b)
wideband spectrogram; (c) narrowband spectrogram; (d)
combination 1 (product); (¢) combination 2 (min).

Three methods for optimally combining spectrograms (in an
entropy sense) to obtain an improved approximation of the joint
time-frequency signal density were presented and explored.
Examples demonstrate the effectiveness of the combinations.
Regarding computational complexity, an N X M TFD combining
P spectrograms requires approximately (P-/)NM multiplications
(by (10)) or comparisons (by (11)). Computing a Cohen-Posch
TFD as per [13] requires at least 2¥M multiplications per itera-
tion; the deconvolution method used here is even more computa-
tionally intensive. We have found that on the order of 100
iterations yields acceptable resuits. The fast combinations pre-
sented here greatly reduce the computation time at a cost of reso-
lution vis-a-vis the Cohen-Posch TFDs. The results, however, are
clearly superior to the original spectrograms.
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Figure 2: Positive time-frequency representations of a speech utterance, spoken by a female: (a) a positive (Cohen-Posch) TFD,
satisfying both marginals; (b) wideband spectrogram; (c) narrowband spectrogram; (e) combination 1 (product); ()
combination 2 (min). The Cohen-Posch TFD and both “combograms” simultaneously resolve fine temporal structure, such as
the two stop consonants near 5.3 seconds, and the individual harmonics of the fundamental frequency, unlike either spectrogram.
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