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ABSTRACT

In time-frequency analysis there are four bilinear domains
commonly used: time-frequency, ambiguity, temporal auto-
correlation, and spectral auto-correlation. This paper intro-
duces four new domains that are quadralinear in the signal.
These four domains are each a function of three of the four
variables used in the bilinear domains. Properties of these
quantities are developed and an application is given for the
design of adaptive time-varying kernels.

1. INTRODUCTION

Two linear domains that are useful for representing a sig-
nal are the time domain and the frequency domain. The
time-frequency functions extend these two linear domains
to four bilinear domains. A signal can be represented as a
Wigner distribution (WD), an ambiguity function (AF), a
temporal auto-correlation function (TACF), and a spectral
auto-correlation function (SACF). Each of these functions
depend on two of the four variables; time, frequency, lag,
and Doppler?, and the functions are all related to each other
by Fourier transforms. A summary of these relationships is
shown in Figure 1 where the direction of the arrow repre-
sents the direction of the forward transform. Each function
has properties that make it more useful for a particular ap-
plication. For example, the WD is useful for representing
the time-frequency content of the signal, while the AF is
useful for designing kernels that eliminate crossterms [1}.

This paper introduces four quadralinear domains that
are functions of three of the four variables mentioned above.
The quadralinear functions are derived from the bilinear
functions in the same way that the bilinear functions are
derived from the linear functions. The quadralinear func-
tions are described below with an application to adaptive
time-varying kernel design. An octalinear function is also
introduced that is a function of all four variables.

The functions defined here bear resemblance to the
Wigner higher order moment spectra defined by Fonollosa
and Nikias [2], the polynomial Wigner distribution defined
by Boashash and O’Shea [3], and the L-Wigner distribution
defined by Stankovié [4].
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1Lag denotes time lag while Doppler denotes frequency lag.
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Figure 1: Domain relationships.

2. QUADRALINEAR TIME-FREQUENCY
FUNCTIONS

This section derives the four quadralinear functions. In
this section, z(¢) and X(w) will denote an arbitrary time
signal and its Fourier transform respectively. This section
will apply what we will call a Wigner mapping. This is the
operation that is performed on a time signal to obtain a
Wigner distribution, however, here it will be applied to one
variable of a multi-variable function. For example, if M is
the Wigner mapping of N then:

5 . s -
M(a,ﬂ,7)=/N(a+§,7)N (a—-z—,‘y)e 188 4§

An inverse Wigner mapping will be the same as the Wigner
mapping with the Fourier transform replaced with an in-
verse Fourier transform. For example, if M is the inverse
Wigner mapping of N then:

1 ] . § ‘
M(ayﬂv"/):ﬁ/N(Q-F'z';‘/)N (0’—5’7)8165116

Neither mapping is invertible; one corresponds to a Fourier
transform, while the other corresponds to an inverse Fourier
transform.
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2.1. Example Derivation

The four different quadralinear functions are all derived by
using the same method. This section details the deriva-
tion of the time-lag-Doppler function (TLDF) and can be
applied to derive the other three quadralinear functions.

Normally, to compute an AF one starts with the TACF
and performs an inverse Fourier transform with respect to
time.

A(9,7) = %/R(t,r) e’ dt (1)

To generate a function that depends on time, lag, and
Doppler, replace the inverse Fourier transform in equation 1
with an inverse Wigner mapping. The inverse Fourier trans-
form takes one from the t domain to the 8 domain, while
the inverse Wigner mapping takes one from the ¢t domain
to a combined ¢-8 domain. The TLDF is defined as

TLDF(t,1,8) = QLW/R(H g,T)R'(t - g,r) %0 ds (2)

The same quantity can be derived by going in the opposite
direction. The TACF can be represented in terms of the
AF.

R(t,7) = / A(8,7)e 7" do (3)

As above, replace the Fourier transform in equation 3 with
a Wigner mapping to arrive at a function that depends on
time, lag, and Doppler.

TLDF(t,7,8) = /A(H + %, )A* (8 — %, r)e " dy (4)

To show that equation 2 and equation 4 are indeed the
same, replace the AF in equation 4 with its definition in
equation 1 and perform a change of variables.

2.2. General Properties

The four quadralinear functions have some basic properties
in common. They are all real, and as the name implies, a
fourth order function of the signal.

The above function can be interpreted as a time-varying
AF or a Doppler-varying TACF (if there was a bilinear func-
tion of time and Doppler then it could also be considered
a lag-varying time-Doppler function). To avoid this ambi-
guity they will be given unimaginative names such as the
time-lag-Doppler function.

Each of the quadralinear functions can be derived in two
ways. One replaces a Fourier transform with a Wigner map-
ping, and the other replaces an inverse Fourier transform
with an inverse Wigner mapping. Since the two derivations
have the same variables, it would be nice if they were actu-
ally the same. This is indeed the case and can be shown as
mentioned above.

Unlike the bilinear functions, the quadralinear functions
are not related to each other by Fourier transforms. This is
easily seen after the properties of the individual functions
are developed below.

2.3. The Time-Lag-Doppler Function

The time-lag-Doppler function derived above is rewritten
here as a function of the signal.

5. . 5
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Some properties of the TLDF:

e the TLDF of z(t) and z(t)e’®e’® are the same; thus,
the TLDF is independent of phase shifts and fre-
quency shifts,

e there are no crossterms in the TLDF of a quadratic
chirp.
The TLDF has the effect of reducing a quadratic chirp to a
complex exponential, hence there are no crossterms. If this
function is considered to be a time-varying AF then one
application is in the design of time-varying kernels. This is
discussed in more detail in a later section.

2.4. The Frequency-Lag-Doppler Function

The frequency-lag-Doppler function (FLDF) can be derived
by expressing the AF in terms of the SACF and applying
the above method. The derivation is skipped and the FLDF
is shown below.

0 . 9
FLDF(w,r,B):ziW/X(w+—2-+%)X (w+§-—%)

4
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The properties of the FLDF are analogous to those of the
TLDF above.

o the FLDF of X(w) and X(w)e’®e?® are the same;
thus, the FLDF is independent of phase shifts and
time shifts,

¢ there are no crossterms in the FLDF of a time signal
with a quadratic group delay.

If the FLDF is considered to be a frequency-varying AF
then one application is in the design of frequency-varying
kernels.

2.5. The Time-Frequency-Lag Function

The time-frequency-lag function (TFLF) can be derived by
expressing the WD in terms of the TACF and applying the
above method. The derivation is skipped and the TFLF is
shown below.

LN r 8

TFLF(t,w,r)_/z(t+§-+Z)z (t—E—Z)
T RA AN AR N7

™ (¢ 5 4):c(t 3 +4)e dé

This function looks similar to the others but the prop-
erties are quite different:
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e the TFLF dependson both time shifts and frequency
shifts,

e the TFLF of a linear chirp is equal to the WD of a
linear chirp,

o there are crossterms in the TFLF of a quadratic chirp
and also a signal with quadratic group delay.

If we set 7 = 0 in the TFLF we obtain the following.
5 2 _» 6 2 —jéw
TFLF(t,w,0) = [ z(t+ Z) z%(t— Z) e dé

Comparing this to the Wigner distribution, an intuitive gen-
eralization to higher powers results in the L-Wigner distri-
bution recently defined by Stankovié [4].

_ TNL_»¢y, T \L _—jwr
LWDL(t,w)—/x(t+2L) ™ (t ZL) e dr

For L =1 this reduces to the Wigner distribution and for
L = 2 this reduces to TFLF with r = 0.

2.6. The Time-Frequency-Doppler Function

The time-frequency-Doppler function (TFDF) can be de-
rived by expressing the WD in terms of the SACF and ap-
plying the above method. The derivation is skipped and
the TFDF is shown below.

_ O Yypn, 87
TFDF(t,w,O)_/X(w+2+4)X w=-5-7)

Xw+ - Yxw- g +1yermay

2 4
This function has the same properties as listed above for
the TFLF. If we set § = 0 in the TFDF and generalize to
higher powers we obtain what could be considered to be a
dual form of the L-Wigner distribution.

g

v L =it gg
7T e d

. ]
LWDL(t,w) =/X(w+ )X (w— 3T)
For L =1 this reduces to the Wigner distribution and for
L =2 this reduces to TFDF with § = 0.

3. EXAMPLE

In this section we show some examples of the TLDF for
a signal whose instantaneous frequency is sinusoidal. The
example signal used is a Hanning windowed version of:

2(t) = It =802

and its Wigner distribution is shown in Figure 2. The
TLDF is calculated at times 48 and 64 and is also shown
in Figure 2. Since we are displaying the function at fixed
times it is more intuitive to think of this quantity as a time-
varying AF.

The TLDF at time 48 is similar to the AF of a complex
exponential. This makes sense, since at time 48 the tangent
of the instantaneous frequency of the example signal is a

horizontal line. In other words the example signal is locally
“like” a complex exponential.

The TLDF at time 64 is similar to the AF of an increas-
ing linear chirp. Again this makes sense since at time 64
the tangent of the instantaneous frequency of the example
signal is a line with positive slope. In other words the ex-
ample signal is locally “like” an increasing linear chirp. In
between these two times, the TLDF gradually progresses as
expected.

4. TIME-VARYING KERNEL DESIGN

An application of the TLDF and FLDF is the design of
time-varying kernels and frequency-varying kernels respec-
tively. Baraniuk and Jones {5, 6] have designed algorithms
that derive adaptive time-invariant kernels based on the
AF. They then extended this to derive time-varying ker-
nels by using a short-time ambiguity function (STAF) [7].
A slightly different time-varying kernel can be constructed
by replacing the STAF with a TLDF and using the same
adaptive algorithm.

The relationship between the TLDF and the STAF is
similar to that between the Wigner distribution and the
spectrogram. Applying an appropriate kernel to the con-
struction of the TLDF could result in a representation of
the “instantaneous” AF that is better than the STAF(in
the same manner that members of Cohen’s class can give
better results than the spectrogram). Now, however, one
needs to design a kernel to construct a TLDF that is used
to design a time-varying adaptive kernel. This two level
kernel design requirement is probably too complicated to
be a reasonable solution.

Windowing techniques were used to attenuate cross-
terms in the TLDF. With this addition, representations
produced from the two different time-varying kernels (de-
signed from the TLDF and the STAF) were very similar.
However, due to computational advantages, the STAF al-
gorithm would be preferred.

5. A TIME-FREQUENCY-LAG-DOPPLER
FUNCTION

It is also possible to construct a function of all four time-
frequency variables. One way to do this would be to write
the SACF in terms of the TACF and replace both Fourier
transforms with Wigner mappings. There are also other
ways to construct this function, but unlike the quadralinear
functions, they do not seem to be equivalent. An applica-
tion would be in the design of time and frequency varying
kernels.

6. CONCLUSION

Higher order representations previously defined {2, 3, 4]
are functions of one or more time and frequency variables.
This paper introduces quadralinear representations that are
functions of three different variables, at least one of which
is lag or Doppler. The quadralinear representations suggest
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an alternative motivation for using higher order representa-
tions, and may provide further insight into the use of higher

order functions for the purpose of signal representation. An

o481 ] example shows that the TLDF satisfies what we would in-
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Figure 2: (a) Wigner Distribution of Example Signal,
(b) TLDF at time 48, (c¢) TLDF at time 64.
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] tuitively expect from an “instantaneous” AF. The quadra-
linear functions can be applied to the design of time and/or
1 frequency varying kernels, though to gain advantage over
] current methods requires unreasonably complex solutions.
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