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ABSTRACT

The Rényi uncertainty measure [2][4] has been pro-
posed to be a measurement of complexity of signals.
We further suggest that it can be used to evaluate
the performance of different time-frequency distribu-
tions(TFDs). We provide two schemes of normaliza-
tion in calculating the Rényi uncertainty measure. For
the first one, TFDs are normalized by their energy,
while for the second one,normalized with their volume.
The behavior of the Rényi uncertainty measure under
several situations is studied. A signal-dependent algo-
rithm is developed to achieve TFDs with a minimal
uncertainty measure. ‘

1. INTRODUCTION

The lack of a quantitative criteria to evaluate the per-
formance of different kernels and guidelines to design
effective kernels is always an obstacle for promoting
the usage of time- frequency analysis. Our goal is to
tackle this problem by utilizing some useful aspects of
the generalized Rényi uncertainty measure.

The discrete-type generalized Rényi information is
defined as: )
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where C,(I,k) is a TFD of Cohen’s class. Flandrin,
Baraniuk, and Michel [2] have established several im-
portant properties of this Rényi uncertainty measure.
We claim that better TFDs are those with smaller
uncertainty measure. It is helpful to an analogy be-
tween TFDs and two-dimensional probability distribu-
tion functions (pdf), therefore, before one applies equa-
tion (1) to a TFD C,(l, k), there is a need to “normal-
ize” it in some way. We suggest two different schemes
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of normalization. The first one is to normalize C;(l, k)
with respect to its energy, i.e., 3 2 Cs(I, k), while the
second one is to normalize it with respect to its volume,
ie, Y3 |C,(1, k).

We developed a recursive algorithm to compute
signal-dependent product kernels which can generate
minimum-uncertainty-measure distributions for given
signals. For the first normalization scheme, the Wigner
distribution (WD) is found to be optimal or near-
to-optimal under certain constraints. If the second
scheme is used, our program can generate minimum-
uncertainty product kernels which are very effective at
suppressing cross terms and maintaining high resolu-
tion.

2. THE PROPERTIES OF RENYI
INFORMATION

The most significant difference between a TFD and a
pdf is that a pdf is always non-negative by definition,
but a TFD of Cohen’s class can take on negative values.

Case 1. R with energy normalized. The WD
can be shown to have the minimum Rényi uncertainty
measure. By Parseval’s theorem, this case is equivalent
to maximizing the following summation:
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where A(m, n) is the ambiguity function and the kernel
is under the comstraint |¢(m,n)] < 1. It is obvious
that the WD will maximize this, thus minimizing the
uncertainty measure. One may note that the work in {1}
is equivalent to minimizing R; with some constraints
posed as a parameter which determines the extent to
how close the resulting kernel should be moved to the
kernel of the WD.

Case2. R, with volume normalized. It is diffi-
cult to analyze the effect of the normalization with vol-
ume, but we can construct some figurative arguments.
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Figure 1: o v.s. Rényi Uncertainty Measure: case 1
(-..); case 2 (_); case 3 (+++); case 4 (-.0)

Now, both auto terms and cross terms contribute to R,
even when the cross terms do not overlap with the auto
terms. Under this condition, the sharpness (resolution)
and the relative magnitude of auto and cross terms will
be two major factors affecting the uncertainty measure.

Case 3. R3 with energy normalized. Here we con-
sider only the simple situation, e.g., when the auto
terms and cross terms in a TFD don’t overlap. It can
be shown that cross terms will have no contribution in
odd-order Rényi uncertainty measure as long as auto
terms are separated well enough. Under this situation,
it can be argued that the WD will be optimal or near-
to-optimal. In general, the effect of multiplying a ker-
nel function in the ambiguity domain is to “smear” the
auto terms in the time-frequency domain, and thus in-
crease the uncertainty measure.

Cased4. Rj3 with volume normalized. Again, we
shall use some figurative arguments. The cross terms
still don’t contribute to R3 under the same assumptions
of case 3, but now the total volume is affected by cross
terms via the operation of normalization. As a result,
the TFDs with smaller cross terms (measured in vol-
ume) will have a lower uncertainty measure than that
of TFDs which have larger cross terms and the same
resolution. In this sense, our algorithm seeks a balance
between the trade-off of suppressing cross terms and
enhancing resolution.

The above discussion is best illustrated by figure 1.
The signal used here is a four-tone frequency hop and
the kernel used is the exponential type, i.e., ¢(m,n) =
exp(—mn/a?). We vary the value of ¢ and compute
the uncertainty measure for the above four cases. In
case 2 and 4, we observe that the minima occur around
o = 10, while in case 1 and 3, the larger o is (the closer
TFD is to the WD), the lower uncertainty measure.
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Notice that the uncertainty of case 1 approaches zero as
the distribution approaches the WD, which means the
WD of it will have the same uncertainty as the WD of a
single Gabor logon does. It has also been pointed out in
(2] as a reason why the second order Rényi uncertainty
measure is not appropriate for measuring complexity
in TFDs.

It is much more difficult to analyze the behavior of
Rényi uncertainty measure when cross terms and auto
terms overlap one another. In [2] the authors pointed
out that Rényi information has great phase sensitivity.
This is also noted in [4] in terms of undue peaking for
certain Gabor logon spacings. This can be illustrated
by the example of varying the distance of two Gabor lo-
gons which have 7/2 phase difference (please see figure
2). The logons are in the form of exp(—t2/40) exp(jt).

It is not only a matter of phase sensitivity but also

20
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Figure 2: This figure illustrates the Rényi uncertainty
measures of two Gabor logons separated by differ-
ent time separations. Notice that the measure varies
rapidly according to different time separations [2], but
the uncertainty eventually increases by 1 bit.

a matter of how to interpret a signal. The Rényi un-
certainty seems to very well reflect the resolution of
signals. If we observe the time marginal when the un-
certainty measure hits the peak, we actually see two
well-separated signals rather than a single component
which we expected from two closely-placed Gabor lo-
gons as illustrated in figure 3. It is more logical to view
the signal not simply as “the addition of two Gabor lo-
gons” under these circumstances. We are far from fully
understanding the characteristics of the Rényi uncer-
tainty measure applied to TFDs, but the measure does
seem to consistently reflect what is intuitively consid-
ered to be “good” versus “bad” resolution.
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Figure 3: This figure shows the time margina.ls. of the
two Gabor logons when the time distance is 11 and 9
respectively.

3. DESIGNING ADAPTIVE KERNELS
MINIMIZING UNCERTAINTY MEASURE

In this section we will describe the method of design-
ing product kernels based on the method proposed by
Jeong and Williams. The kernel function is derived
from a real-valued primitive function h(t) as

6(07) = H(07) = / h(t)e=90tdt 3)

where H(67) is the Fourier transform of h(t). The dis-
crete version of it is:

U
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where h(u) is the samples of h(t) and m = —L,...,L;
n=—K,...,K. L and K are the sizes of the s1gna.l’
auto-correlatlon matrix. Now we apply the steepest
gradient method to adjust the primitive function h(u)
under the constraint 3~ h(u) = 1:
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where § is the step size for each iteration. In the rest of
the section we will consider the case of 3rd order Rényi
uncertainty measure with volume normalized. The par-
tial derivative part in equation (5) can be calculated by
the following: Define
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we have
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with sgn(e) being the sign function and C; (I, k) is the
TFD generated by the kernel function
1 : u=0

$u(m,n) = { 2 cos(ugzmn) u=1...,U

4. EXPERIMENTS

In this section we will give two examples by using the
uncertainty measure of case 4.

The third order Renyi Uncertainty measurs

Figure 4: Four-tone frequency hop: the uncertainty

‘measure and the TFD of the signal

Example 1. Four-tone frequency hop. The sig-
nal has four different frequencies: 1.9, 2.5, 0.7, and 1.1
(rad/sec). The uncertainty measure of case 4 is used.
Figure 4 shows the uncertainty measure decreases with
the iterations, and the resulted TFD of the signal. Fig-
ure 5 shows the primitive function and the kernel func-
tion in the ambiguity domain.

Example 2. Two parallel sinusoids. The signal
z(n) = exp(j1.8n) + exp(j2.6n). Figure 6 shows the
TFD and the time marginal of the signal. The uncer-
tainty measure of case 4 is used. Notice that the cross
terms are almost totally eliminated and thus the TFD
appears as two parallel dashed lines instead of two con-
tinuous lines in order to meet the constraint that the
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Figure 5: Four-tone frequency hop: the primitive func-
tion and the kernel function
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Figure 6: Two parallel sinusoids: the TFD and the
time marginal.

line integral of TFD along the frequency axis should be
equal to the time marginal.

We have shown some results by using the 2nd or-
der Rényi uncertainty measure in our previous paper
[5]. We found that more stable results are obtained
when the 3rd order Rényi uncertainty measure is used.
In both cases, the primitive functions usually have an
abrupt change (either a dip or a peak) at the center. It
suggests that uncertainty measure is very sensitive to
the weight of a WD component in the composition of
RIDs.

5. CONCLUSION

The Wigner distribution has the highest resolution as
well as the minimum Rényi uncertainty measure under
the situation when the cross terms do not overlap with
auto terms and when the first scheme of normaliza-
tion is used. As a contrast, with the second scheme of
normalization, RIDs have smaller uncertainty measure.
We also developed an algorithm to generate a prod-
uct kernel with minimum uncertainty measurement for
given signals, and the result is generally satisfactory,
often exhibiting much reduced cross terms.
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