ADAPTIVE FILTERING IN SUBBANDS USING A WEIGHTED CRITERION
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ABSTRACT

Classical transform-domain algorithms adapt the filter co-
efficients (in each “frequency bin”) by minimizing a cri-
terion depending on a full-band time-domain error. This
paper proposes an algorithm which updates each portion of
the frequency response of the adaptive filter according to
the error in the same subband. For this purpose, a multi-
rate adaptive filter is used where a subband decomposition
of the error is performed using critically sampled lossless
perfect reconstruction filter banks. This new algorithm
is based on the minimization of a weighted criterion by
a stochastic gradient algorithm and leads to improvements
in convergence rate compared to both LMS and classical
frequency domain algorithms.

1. INTRODUCTION

QUARE orthonormal transforms have been introduced

in adaptive filters for improving the convergence rate
of the Least Mean Square (LMS) algorithm. Two such
approaches are, on one side, the Frequency domain Block
LMS (FBLMS) algorithm that has been derived from the
Block LMS (BLMS) using the Discrete Fourier Transform
(DFT) and, on the other side, the Transform Domain Adap-
tive Filter (TDAF) [1]. In all cases, the orthogonal trans-
form is used as a means for decomposing the input into
approximately decorrelated components.

It is well known that LossLess (LL) Perfect Reconstruc-
tion (PR) Filter Banks (FB) also provide approximately
decorrelated decompositions of signals’ (the coefficients of
a LL PR FB can be interpreted as a non square matrix
of orthonormal vectors [2]). They have the advantage of
achieving efficient decorrelation even for a small number of
components. Since LL PR FB can be used to implement
them, the Discrete Wavelet Transform (DWT) also belongs
to this category. First attempts for using filter banks or
DWT in transform domain adaptive filtering were reported
in [3, 4). A common characteristic of these schemes is that
the “transform” is applied to the inputs of the adaptive
filter. Moreover, the variables which are explicitly adapted
are the filter coefficients in the transform domain. This im-
poses some links between the filter length and the transform
size, which must be taken into account in the filter bank
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schemes (and wavelet ones) by some kind of periodization
of the input signal.

This paper provides another way of introducing differ-
ent step sizes in different subbands (thus also improving
the convergence rate of the adaptive filter). The main ad-
vantages of our algorithm are twofold: first, it keeps the
classical filter bank computational structure, and second,
it provides more flexibility in the length of the filters in
the bank. Finally, our approach shows some connections
between appropriately weighted least squares minimization
and the convergence rate of the adaptive filter.

Note that another set of papers [5, 6, 7] deals with adap-
tive filtering in subbands mainly in order to allow computa-
tional savings. In these algorithms, the adaptive filtering is
performed in each subband. Thus, the problem of adapting
a single long FIR filter is converted into that of adapting
several short filters operating at a lower rate {5). How-
ever, when critical subsampling is used, the output con-
tains undesirable aliasing components which may degrade
the adaptation of the algorithm. A possible explanation of
the problems encountered with this approach is that one
tries to use the subbands in a fast convolution algorithm,
which can be done only in an approximate way. In order
to avoid this problem, our method separates the conver-
gence improvement (which is be obtained by means suited
to a subband approach) from the reduction of complexity
(which can be obtained by any fast algorithm since our
algorithm is basically of a block type).

2. NOTATIONS, CRITERION

This study is undertaken in the context of adaptive iden-
tification, all variables being assumed to be complex val-
ued, which corresponds to the most general case. In the
following, the operator (.)° demotes transposition as )
denotes conjugation and () = ((.)‘)*, while Diag(X) in-
dicates the diagonal matrix whose diagonal elements are
the components of vector X. Let W* be the FIR transver-
sal adaptive filter, of length L. Notations z» and dn denote
respectively the input and reference signal. N is the block
size (number of computations that are grouped together),
while KN is the length of the filters in the orthogonal fil-
ter bank. Upper case letters denote vectors or matrices of
appropriate sizes:

X" = (zﬂlzﬂ—h"'lzn-—KN-{»l)t
Xn = (Xn,Xn-1,o, XnoLy1)KNXL
Wn = (wo(n),wi(n), -, wr(n))
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D, (dnydnet, - dn_xengr)t
E, (en,eu—ly"‘,en—KN-f-l)' =Dn-XnW:

The vector of the coefficients of the i*? filter of the analysis
bank is denoted by H;, all of them being gathered in an
N x KN matrix H = (H{,---, Hy_,)".

Suppose now that the error exn4n, 0 <n<<N-1 k>
0, has been passed through a LL PR FB, thus being de-
composed in N subbands (e2,---,eN¥"!)!, k > 0, by H the
analysis bank. If the input signal is ergodic and wide sense
stationary, the orthogonality property of the LL PR FB
ensures that both formulations of a block criterion below
are equivalent: (£(.) denotes expectation):

JBlock_g Nz—:ll 2y _ P i]2
= exNtn|" | =€ Zlekl (1)

n=0 =0

o

Of course, minimizing both versions of the criterion would
result in the same algorithm, i.e. a BLMS algorithm. How-
ever, consider now the minimization of the following weighted
least squares criterion, where the quadratic errors in each
subband are weighted by some constants:

JwSsaF _ NZ—I,\.%,‘ (leilz) )

=0

Here, the size of the “transform” (FB) is independent from
the filter length and depends only on the block size. Since
this approach relies on orthogonality, and since orthogonal-
ity of the LL PR FB requires the presence of a subsampling
by N, this method is restricted to block algorithms.

3. THE PROPOSED ALGORITHM

Assume that the set of weights A; is fixed. Denoting X.° =
(z;,,-~-,z;,_L+1) = HiX, the non subsampled output of
the i** analysis filter, an LMS-like adaptation of the crite-
rion (2) is easily obtained by computing its instantaneous
gradient estimate Ji (W) relatively to W*;

=0

w* = W&, — ajk —.W* N—IA. [ ae;c *
(k+1)N = YWiN “W— kN_/-‘Z i€k W~

where g is the scalar step size controlling convergence rate,
leading to:

N-1
Wity = Win +u Z A Xin"es (3)

1=0
This can be rewritten in a more compact form as:
Wisnyn = Wiy + u (HXew)® A2 HEyy 4

where A™% = Diag(), - -+An-1). The adaptive scheme is
depicted in fig.1 in the special case where L = N. It can
be checked that when K =1 (H is a square orthonormal
transform) and Vi A; = 1 this algorithm is exactly the
classical BLMS algorithm. However, at this point, it is not
clear how the use of a weighted mean square error instead
of a regular one could improve the convergence rate of the
algorithm. This is explained in the next section.

4. CHOICE OF THE WEIGHTS

This section is concerned with the influence of the weights
Ai on the convergence rate. In order to understand this
mechanism, the case where the filter bank is composed of
N ideal Nyquist filters that are adjacent and do not overlap
(ie. K — +400) is considered in the following. Let W, be
the L-tap filter to be identified (same length of W*) and
SWn = W, — W,. We have D, = X, W2,

4.1. Appropriate choice of the weights

Under the previous assumptions, each term of the sum in
(3) deals with adapting a different part of the spectrum
of W). Indeed, the spectra of X. are non overlapping.
Thus, this algorithm mirimizes the error of each subband
independently without any influence from the other ones,
and these errors can be adapted with a different step size,
without any drawback: our algorithm behaves as several
LMS working separately in each subband. Furthermore, it
is well known that the best convergence rate of the LMS
algorithm is achieved for a convergence step size given by:
#Ai = 1/(Lo?;) where o2, denotes the power of Tk.

The parameters u and A; need to be tuned. Each weight
Ai is chosen so that the fastest convergence occurs inde-
pendently in each subband when g = 1. Such a choice
corresponds to A; = 1/(Lo?;). The actual algorithm us-
ing this set of weights and a smaller 4 (in order to obtain
various trade-offs between convergence rate and residual
error) is denoted as the Weighted Subband Adaptive Fil-
ter (WSAF). Note that choosing A; in order to minimizing
each subband error e} with the fastest convergence rate is
equivalent to minimizing the weighted criterion (2) with the
specific weights given above. This comes in contrast with
classical frequency-domain or transform-domain adaptive
algorithms which, despite intuition, do not minimize each
frequency band independently.

4.2. Convergence rate

This subsection intends to provide a more precise under-
standing of the underlying mechanism allowing a faster
convergence for the WASF.

Let Ryix: denote the size I autocorrelation matrix of
the non subsampled outputs of the i*" filter. Since the fil-
ters in the bank are selective, z!, has a narrow spectrum.
Thus, Rxix: seems to be badly conditioned. Apparently
this comes in contradiction, with the expected good con-
vergence behavior of the WSAF.

Suppose that no noise is added to dr,. Under the usual
assumption that the adaptive filter taps are uncorrelated
from the input samples z,,, the WSAF adaptation equation
yields:

E(Wiin) =€ [IL - W HX)IATPHX,] £(5W)

The convergence rate of the WSAF is thus determined b
the eigenvalue spread of matrix M = £ [(HXH)HA_2HX,,T

= Zi;l AiRxixi, (which should be close to one for fast
convergence). Asymptotically (i.e. L — +o0), Fy diag-
onalizes all matrices Ryixi. If the analysis bank is com-

posed of non overlapping perfect Nyquist filters, each indi-
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vidual matrix Ryiyx: is singular. However, an eigenvalue
will never be zero in all subbands. Therefore, the summa-
tion of all matrices Ry:x: weighted by ) is not singular,
and for each matrix Ry ., the weight A, plays the role of
a normalization coefficient such that the eigenvalue spread
of the summation is reduced.

This development has been checked by simulation by
computing the eigenvalue spread of the matrices involved
in the convergence. In the case of an AR2 highly corre-
lated input signal (a white gaussian noise filtered by the
inverse of 1 - 1.6z7! +0.81z™2). The WSAF with weights
Ai = 1/(Lo2;) and increasing filter lengths in the bank is
compared to the LMS algorithm. The number of subbands
is set to N = 10, and the adaptive filter to be modelized
has L = 20 taps. The length of the filters in the bank used
are respectively 20 (K = 1) for a DCT}v, 40 (K = 2) for
an Modulated Lapped Transform (MLT) and 80 (K =4)
for an Extended LT (ELT) [2]. The eigenvalue spread re-
duces respectively from 1400 for Rx x (LMS case) to 51.2,

2.7 and 2.2 for the various matrices M. This explains the"

better convergence behavior of the WSAF compared to the
LMS algorithm.

4.3. A time varying strategy for the weights and
step size

This part provides a good choice for the weights wher a
white noise is added at the output of the adaptive filter (e.g.
in an Acoustical Echo Cancelation context: AEC). Let b,
denote this zero mean white noise and B, = (bnybn-1,-
“*+,bn—xn+1)'. The modelization error vector is defined
as €n = (€n,€n—1,"*, €n—kN+1)' = Bn — En.

All signals zn, bn, dn and e, are assumed to be er-
godic and wide sense stationary. The filters in the bank
are supposed to be non overlapping perfect Nyquist filters.
Consequently, the subband outputs are uncorrelated. In
the following, d}, is used for the i*® subband sample asso-
ciated to block %, resulting of the decomposition of d, by
the aralysis bank H. Let us calculate the e?ecta.tion of
the squared norm of §Wnyn (||6Wa ) = sWE §W,.). Un-
der the assumption that z,Lb, and bsLle, (L stands for
“is uncorrelated with”) and designating by A, the matrix:
An = AT HX, X HHA~? we have:

E(I6Wnsnl®) = £(6Wal®) + 4E [(HBa)™ AnHBa]
+u’E [(He,.)H AnHen] '
—2u€ [(Hc,,)HA—zHe,.] (5)

At convergence, £ (|§Wnsn|*) = £ (Jl6Wall®). I e} Lel,
2Lz, ziLel fori # j and £ (]s;;r Izi,_k[’) = aio?, 0%,
(where a; is an alternative to the independence hypothesis),
it is possible to prove that (5) yields:

-

As the filter bank is “ideal”, the "th. subband residual error
is due only to the signals =%, and b,, in that very subband.
In this case, each individual term of the sum (6) is zero.

L-1

Z Liip [[LA.’O'ii (03.- + 0':.')

i=0

2 3

2 (6)

)
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In an AEC system, the adaptive filter aims at attenuating
the echo. Therefore, it is reasonable to set the requirement
that the average power of the misadjustments due to noise
o.: for each subband should be asymptotically lower than
the power of the actual echo o4 in the same subband, say
pi times lower. This condition reads: o,; < picgi, 0< i<
N —1 and results in the following condition:
si = pAi <

)

When a low Signal to Noise Ratio (SNR) occurs, the clas-
sical proposed adaptation rule leads to an erratic variation
of the adaptive filter taps. This could yield large residual
errors, even larger than the actual echo. The step sizes pro-
vided in this part enable to struggle against this problem.
Indeed, if the SNR is low in a subband, the weight p); in
that specific subband (obtained by exponential window es-
timations of the various quantities) is also small. Thus, the
adaptation process is slowed down in that subband until
a good SNR is encountered. On the contrary, with excel-
lent SNR the step size formula reduces to the classical one
of subsection 4.1. In a context of AEC for non stationary
signal such as speech, this procedure can improve the con-
vergence behavior of the WSAF. The resulting algorithm
is called the “improved WSAF”. Note that the use of these
step sizes can only result in decreasing the adaptation step
size, hence cannot lead to instability.

2pi

,0<i< N -1

a2,

i

aipi + 2=
ds

5. ARITHMETIC COMPLEXITY

The WSAF is dedicated to very long adaptive filters (as in
AEC) and small number of subbands (required to keep the
overall complexity as low as possible). Thus, this section
only treats the case where the adaptive filter length is larger
than the filter size in the bank: L > K'N. In the sequel
and for the simulations, an ELT is used as a filter bank.
Using overlap techniques based on the Fast Fourier Trans-
form for computing the convolution and the correlation in
the update equation of the WSAF leads to the following
complexity in terms of real additions (ar) and real multi-
plications (un) processed per each output sample:

pp = 8—8K+%%+ﬁ;+h}—3—-%+3log2(N)
+2log,(2N) + £28CM) 4 4K log, (2K N)
+2Llo!212KN!
N
ar  =-2-10K+ 85 4 AL 412 _ sl

+9log,(N) + 6log,(2N) + mg—b;‘v‘@l
+12K log, (2K N) 4 SLloga(2KN)

That 1s to say that for an L = 1024 tap adaptive filter,
N = 32 subbands and an MLT as filter bank (i.e. the
K =2 ELT case): pup = 1013.38 and ag = 3725.38. Note
that these complexities deal with the process of complex
data. In an AEC context all variables are real and the
complexities are thus approximately halved. In comparison
with a small block version of the FBLMS: the SBFBLMS
(the adaptive filter is split in equal sized vectors of size the
block length, each of them being adapted by an FBLMS),
the complexity of the WSAF is 17% smaller.



6. SIMULATIONS AND CONCLUSION

Fig.2 compares the new algorithm -WSAF- to the LMS and
SBFBLMS algorithms. The simulation is run in a context
of adaptive modelization. The input of the adaptive filter
is an USASI noise (stationary noise with the same spec-
trum as speech in average). The filter to be identified has
128 taps (it is the truncation of the acoustic response of a
room), so does the adaptive filter (L = 128). White noise
is added to the reference signal: the output SNR is 40dB.
The parameters of the WSAF algorithm are N = 32 and
K = 2. The filter bank is an MLT in which the filter length
is twice the number of subbands (K = 2). The step size
of each algorithm is chosen in order to enable the fastest
convergence rate. The noise is subtracted from the error
- before computing its mean squared value.

The proposed algorithm is clearly an improvement over
the LMS and the SBFBLMS algorithms (for which the pa-
rameters were comparably tuned: same number of vectors
in the transform and same block sizes) in all the simulations
we have run.

Finally, fig.3 shows a classical Normalized LMS (NLMS)
algorithm, an improved NLMS algorithm (with the same
time-varying strategy as we propose for the WSAF), and an
improved WSAF, in a context of AEC. The SNR is 10dB.
It clearly appears that, while the improvement provided
by the time-varying strategy on the NLMS is important
in terms of convergence, the same strategy applied to the
WSAF allows a further improvement of about 7dB on the
residual error without loss in terms of convergence.
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Figure 1: Multirate adaptive filter scheme for K = 1
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Figure 2: Comparison of the convergence curves of the
WSAF, SBFBLMS and LMS algorithms
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Figure 3: Comparison of the convergence curves of the
LMS, improved LMS and improved WSAF algorithms



