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ABSTRACT

In this work we develop an adaptive nonlinear estimation
technique, polynomial model-based, that has guaranteed
stability and makes parsimonious use of coefficients.
Our approach to the development of reduced-complexity
adaptive nonlinear filters is based on a combination of:
(a) The Wiener model of nonlinear systems (both FIR
and IIR) and its application to nonlinear estimation from
white Gaussian signals; (b) Wiener’s notion of fixed
(Laguerre) pre-orthogonalization, which we have extended
to include adaptive pre-orthogonalization with respect to
arbitrary (non-white and non-Gaussian) input signals [2];
(c) Efficient implementation of memoryless nonlinear maps
for uncorrelated inputs based on (Hermite) orthogonal
polynomials; (d) Application of suitably modified RLS and
LMS adaptation techniques to determine the coefficients of
such nonlinear maps.

1. INTRODUCTION

Adaptive nonlinear filtering has been dominated by the
polynomial-based (Volterra, binomial, etc.) approach, in
part because: (i) this approach uses a rather general model
of nonlinearity, and (ii) polynomial models are linear in
their coefficients. By varying the structural indices, the
length of memory and the degree of nonlinearity of a
polynomial model, one can approximate a large class of
nonlinear systems.

The most commonly used approach in adaptive non-
linear filtering is based on the truncated Volterra model
due to its guaranteed stability. It exploits the linearity
of the truncated Volterra model with respect to its
coefficients, to transform adaptive single-channel nonlinear
estimation problems into adaptive multichannel linear
estimation problems. The computational complexity of
such schemes is either linear in N, the number of
coefficients, or quadratic in N. For instance, the
adaptation of a quadratic nonlinearity, which involves N ~
M? (M denotes the length of memory) coefficients,
requires O(M?) computations for LMS-type schemes
and O(M*) for RLS-type schemes. By exploiting the
(partial) shift structure of the multichannel embedding,
one can obtain “fast” RLS-type schemes that require
O(M®) computations [3]. This high computational cost
is the main drawback of adaptive Volterra filters.
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In our work we develop an adaptive nonlinear
estimation technique polynomial model-based that has
guaranteed stability and makes parsimonious use of
coefficients. Our approach to the development of reduced-
complexity adaptive nonlinear filters is based on a
combination of:
¢ The Wiener model (Fig. 1) of nonlinear systems {(both
FIR and IIR) and its application to nonlinear estimation
from white Gaussian signals.

e Wiener’s notion of fixed (Laguerre) pre-orthogonalization,
which we have extended to include adaptive pre-
orthogonalization with respect to an arbitrary (non-white
and non-Gaussian) input signals [2].

¢ Efficient implementation of memoryless nonlinear maps
for uncorrelated inputs based on (Hermite) orthogonal
polynomials.

e Application of suitably modified RLS and LMS
adaptation techniques to determine the coefficients of such
nonlinear maps.

To be more specific, we construct efficient adaptive
implementation of the Wiener model of non-linear systems
as a polynomial model consisting of a Linear- Dynamic {LD)
module and Nonlinear- Memoryless- Readout(NMR) module
(Fig. 1). The use of a pole-zero (IIR) configuration to
represent the LD module can provide significant reduction
in implementation complexity compared to Volterra (FIR)
models. Moreover, having linear dynamics makes it much
easier to ensure the stability of the overall model (compared
to models based on non-linear difference equation (3], for
example) . This advantage is even more important in
adaptive implementations where the model parameters vary
in time.

The single-input/multiple-output LD module F(z) can
be interpreted as a filter bank. If this filter bank is
orthogonal it maps a white input signal z(n) into white and
uncorrelated output signals o (n), -, €ar (n). In particular,
if the input signal is Gaussian (and white} then the
outputs £o(n),---,€m(r) are independent of each other
(and white). Wiener suggested using a Laguerre based filter
bank, because this makes it possible to implement the entire
filter bank as a cascade of identical first-order all-pass filter
sections preceded by a single low-pass section. However, if
the input is stationary Gaussian but colored (not white),
the filter bank has to be orthogonal with respect to the
power spectrum of the input signal S:(e’?>"f). Since often
Sz(e’*™1) is not known a priori, adaptive orthogonalization
is needed. We refer to the configuration of an LD module
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Figure 1: The Wiener Model of Non-linear Systems

that produces uncorrelated outputs (for arbitrary input
signals) as a linear-dynamic-uncorrelated (LDU) module.

Since orthogonalization is a linear operation, the
outputs of the LDU with a Gaussian input z(n),
are jointly Gaussian, and thus they are independent.
Consequently when we use Hermitian polynomials in the
Polynomial Generator, its outputs zi(n)---zn,(n) are
also uncorrelated. Now since the signals zi(n)--- zy,(n)
are uncorrelated the coefficients of the memoryless linear
combiner can be determined independently for each z; so
that the adaptation of these coefficients can be carried
out, for instance, in an order recursive fashion using a
modified gradient adaptive lattice algorithm (which we call
the ORGA algorithm [1}).

For correlated signals z1(n)---zn,(n) the use of the
ORGA algorithm for adaptation of the NMR module may
result in an unacceptable misadjustment error. As an
alternative we consider two adaptive mechanisms:
¢ stochastic gradient adaptation, using a version of the
normalized LMS algorithm with time varying step size, or
¢ least squares technique, using the RLS algorithm

2. ADAPTIVE
WIENER-LAGUERRE-HERMITE MODEL

As discussed in the introduction we opt to use the
LDU/NMR model structure consisting of a Laguerre-lattice
LDU module and a Hermitian NMR module (Hermite
Polynomial Generator + Adaptive Linear Combiner).

The adaptation of the LDU module is affected only by
the statistics of the input signal z(n) and is independent of
the statistics relating the desired output signal d(n) to the
input signal z(n). Therefore, there is no global feedback
between the modules and we can consider the adaptation
of each one of the three modules separately.

2.1. Adaptive LDU Module

For the LDU
module we use the NGALL (normalized gradient adaptive
Laguerre-lattice) algorithm [2] that produces normalized
outputs bEN)(n). These outputs represent the variance-
normalized Laguerre-lattice (backward) residuals and their
variance is [2]

1-2A 1

BB ~ T = oy

which converges very slowly to its non-unity steady state
value of 1 — }; it takes about ;L5 iterations to reach 90%
of this steady-state value.

While the slow convergence of the variance of b,(»N)(n)
has no effect on the dynamics of the NGALL algorithm
itself, it has an adverse effect on the performance of the
Hermite polynomial generator. Consequently the outputs
of the NGALL algorithm need to be rescaled, viz., &i(n) =
\/a(n)b‘(-N)(n) so that E|&i(n)|> ~ 1 for all n. This
produces unit-variance inputs to the Hermite polynomial
generator module.

2.2. Hermite Polynomial Generator

The Hermite polynomials satisfy the recursive relation [4]
Hpy1(X) = XHp(X) — o4 PHp_1(X) (1)

with Ho(X) = 1. Thus the outputs of the Hermite
polynomial generator are products of terms of the form

Hp(&i(n)), viz.,

d= Z ko ke bpe Hho () Hiy (€1) ... Hiyp, (Em1)

ko ki,. .., knm
kigfo, L], 0<Y ki<L

Since the outputs of the LDU module are normalized i.e.,
E | &(n) |°=1, it follows from (1) that the coefficients of
the Hermite polynomials are constant. However the outputs
of the Hermite polynomial generator are not normalized
because E | Hp(£i(n) [*= El&i(n)]PPP! = o3 P! (for
Gaussian signals). This can be remedied by scaling the
Hermite polynomial of order P by ;QTIF!’ viz., Hp(X) =
Hp(X)
ok VP!
input signal. Such normalized Hermite polynomials satisfy
the recursive relation

1 [X _ _

—L_ [ZAp(X) = VPHr_1(X ] .
m ox P ( ) p-1( )

In practice the variance of the scaled residuals §g(n) =
V4 a(n)bfm(n) fluctuates around unity, so that the
decorrelation achieved by the Hermite polynomial generator
is less than perfect. However, this slight imperfection has a

negligible effect on the overall performance of the adaptive
algorithm.

so that E|Hp(X)[* = 1 for all P and for a Gaussian

Hpyi(X) =
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2.3. Adaptive Linear Combiner

The outputs z1(n), ---, zn.(n) from the Hermite
Polynomial Generator submodule span the linear subspace
from which we want to estimate the desired signal d(n).

This means that the estimate d(n) is obtained as a linear
combination of z;(n), viz.,

d(n) = [wi(n)- - wy, (0)] [z1(7) -+~ 2xy (] = W(n)z(n)

"and the coefficients of the adaptive linear combiner wi(n)
can be determined using standard techniques developed for
adaptive linear filters. All of these techniques attempt to
determine the parameters {w;}/** that minimize the global
estimation error

Ny
J=Euam—ﬂmP}=Eﬂ«m—§jmamnﬁ-a>

The techniques vary in the assumptions made about
the degree of statistical correlation between the variables
{zi(n)};’, and in the method of estimating the various
probabilistic moments needed to determine the optimal
solution for (2).

The most conservative technique is the Recursive
Modified Gram-Schmidt (RMGS), which makes no
assumptions on the correlation between the variables z;(n).
Using a deterministic (exponentially-weighted) estimate of
the correlation matrix R = E{z(n)z*(n)}, the RMGS
produce a decorrelated equivalent of z(n) which is then used
to form an estimate of d(n). The main disadvantage of this
method is its high computational cost: O(N2) operations
per a single time-instant are required. We consider two
alternative realizations of the adaptive linear combiner
submodule:
¢ assuming that the outputs from the Hermite Polynomial
Generator are uncorrelated, the coefficients of a linear
combiner can be adapted in an order recursive fashion using
gradient adaptive type (ORGA [1]) algorithm
e if decorrelation between variables z(n) cannot be
assumed, we can still use a stochastic gradient approach
(NLMS with time varying step size [1]) for adaptation of
the linear combiner coefficients.

Both approaches achieve reduced complexity (O(N.)
operations per a time-instant) at the cost of a modest
increase in the steady-state error.

The outputs of the Hermite polynomial generator are
perfectly decorrelated only when the outputs of the LDU
module are: (i) Gaussian, and (ii) uncorrelated. While the
first condition (Gaussianity) may be occasionally met, the
second condition is never perfectly met as the consequence
of the ongoing adaptation in the self-orthogonalizing LDU
module. Consequently, using the ORGA algorithm for
adaptation of the linear combiner results in an excess error
J.z. An upper bound on this error can be expressed in
terms of the eigenvalues (A;) of the data correlation matrix
(R = E[z(n)z*(n)]) as follows

Jez € Nu(0F — Jmin) max (Xl- + A - 2)
where % = Eld(n)[>. In particular, if the z;(-) are indeed

uncorrelated (so that R = I ), then the upper bound
vanishes (because A; = 1for all i) and J.. = 0, as expected.
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3. SIMULATION RESULTS

We compare the performance of adaptive Wiener-Laguerre
and adaptive Volterra, second order non-linear models
by computer simulation. The RLS algorithm, which
in this case requires (O(M?®)) computations, is used
to adapt the second order Volterra model (VT/RLS)
coefficients. For the adaptation of Wiener-Laguerre model
coefficients RLS (WLT/RLS), ORGA (WLL/ORGA) and
NLMS (WLL/NLMS) algorithms are used.

The performance of the various adaptive non-linear
models is evaluated in several experiments, in which the
adaptive filters are used in a system identification scenario.
The system to be identified is a second order non-linear
system as shown in Fig. 2(a), where H(z) is a linear

(a} 2-nd Order Systam Model

(b) Impulse response
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Figure 2: Unknown System Used in Experiments

4-th order band-pass Butterworth filter with frequency
characteristics and impulse response as presented in Fig,
2(b), (c), (d). The amount of non-linear distortion
introduced by our model is characterized in terms of the

3o m (B

W [dB] . We use M =
10, a =0.5 and P =2, for the adaptive Wiener-Laguerre
model while M = 22 and P = 2 are used with the adaptive
Volterra model.

The input signal z(n) to the unknown system is a
unit variance AR(1) process obtained by filtering zero-
mean white noise process u(n) through the filter Ho(z) with
a = 0.8 . The distribution of the white noise signal u(n) is
selected from the family of double sided generalized Gamma

Elu n) 4
[Blu(n)?]
of the distribution, while maintaining a unit variance. The
desired signal d(n) is obtained by adding zero-mean white
Gaussian noise w(n) to the output of the unknown system.
The noise w(n) is independent of the input signal z(n).
Experiments are performed with a signal-to-measurement-
noise ratio of SNR; = 20 dB.

parameter [; = 10log,,

distributions where we control the kurtosis v4
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Figure 3: Comparison between 4 adaptive models while
varying kurtosis and Dz; SNR; = 20 dB, Solid line
(D2 = 0 dB), Dashed line (D; = 4 dB), Dotted line
(D2 =7 dB), Dash-dotted line (D; = 10 dB) and Marked
line (*) (D:=13dB).

The results presented are ensemble averages of 50
independent runs of 2000 samples each. Performance
evaluation is carried out by plotting the ensemble average
of the squared modeling error (MSE) and computing the
steady state error (MMSE). Based on the simulation results
we observe that:

¢ The Laguerre models perform well even without exact
Imowledge of the optimal Laguerre parameter a; for a €
[0.35 —0.6] (aop: = 0.5) the excess error is always less then
1.5dB.

o The Wiener Laguerre model with M = 10 and a =
0.5 has similar modeling capabilities to that of the Volterra
model with M = 22.

o The models with RLS adaptation exhibit a robust
behavior with respect to changes in signal statistics (in
particular kurtosis) as well as changes in the amount of
second order non-linear distortion D, (Fig. 3).

® The WLL/NLMS model is comparable to the VT/RLS
and WLT/RLS models in terms of steady-state error and
robustness with respect to kurtosis and D;.

¢ The WLL/ORGA model is more sensitive to changes in
kurtosis and level of non-linear distortion. Its steady-state
performance is comparable to the other models only for a
narrow range of kurtosis and D,.

¢ The WLT/RLS model and the WLL/ORGA model
exhibit the fastest convergence rate ( Fig. 4).

M | (MULT. + DIV.)/ITER.
VT/RLS 22 O(5M°) 6.235 107
WLT/RLS | 10 O(:M?) 6.61910°

WLL/ORGA | 10 O(4M*) 6.226 10°

WLL/NLMS | 10 O(3M?) 2.943107

Table 1: Comparison of Computational Complexity for
Quadratic Models
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Figure 4: Comparison between 4 adaptive models for a
non-Gaussian input (y4 = 5.4), SNR: = 20 dB and
D; =10dB.

A more detailed evaluation of the computational
requirements is given (Table 1) by the number of
multiplications and divisions per time iteration executed
by each of the above mentioned algorithms.

4. CONCLUSION

In this work we have developed adaptive non-linear
estimation technique that use the Laguerre filter bank to
possibly reduce the structural index M of the non-linear
model. This approach offers an alternative performance-
complexity trade-off. In particular for a quadratic non-
linear model: (i) the WLT/RLS has excellent steady
state performance and fast initial convergence at the cost
of O(M*) computations per time iteration; (i) the
WLL/ORGA exhibits excellent convergence behavior and
requires only O(M?) computations however, it introduces
a moderate steady state performance degradation; (iii)
WLL/NLMS performs only O(M?) computations per time
instant and has very good steady state performance but
with somewhat slower initial convergence.
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