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ABSTRACT

The wavelet transform least mean squares algorithm
(WTLMS) has been recently proposed as an alternative to
the simple and transform based (DCT) LMS algorithms,
because of its faster convergence. In this paper, we first
show the influence of the regularity of the wavelet low-
pass filter on the convergence behavior of the normalized
WTLMS algorithm (NWTLMS). Then, we show that the
subband decomposition of the input signal along a regular
subband tree, which splits the signal frequency band
uniformly, gives better results, i.e., a faster convergence
rate than the dyadic subband tree, which splits the signal
frequency band dyadically. Finally, we show that perfect
reconstruction quadrature mirror filters (PR-QMFs), which
are less regular, can lead to as good results while the
multiplier-free PR-QMFs offer, furthermore, a very
reduced computational complexity, and hence can be used
as an alternative to the wavelet filters for accelerating the
convergence rate of the NWTLMS algorithm.

1. Introduction

The conventional time-domain LMS adaptive filter
algorithm has the advantage of being very simple, easy to
implement and has a very low computational complexity.
However, when the input signal is highly colored, the
LMS convergence is slowed down [1]. One way to
alleviate this problem is to prewhiten the input signal
using a certain number of transforms, which can be
efficiently computed with a small extra computational
load, such as the fast Fourier transform (FFT) and the
discrete cosine transform (DCT) [2]. The use of the
discrete wavelet transform (DWT) has been shown to lead
to a faster convergence (3], [4]. In this paper, more results
on the convergence of the WTLMS algorithm are
presented: first, we investigate the influence of the
regularity of the wavelet filters on the convergence
behavior of the normalized WTLMS. To this end, we use
the Daubechies wavelet filters of 4, 8, 10, 12, 14 and 16
coefficients since we know that for these filters the
regularity increases with length [6]. We shall show that,
when such filters are used, the convergence rate is
improved as the regularity increases. Then, we investigate
the influence of the subband decomposition structure on
the convergence behavior of the NWTLMS. We will show
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that the regular subband tree (fig. 2) leads to better results
than the dyadic tree (fig. 1). Finally, the use of multiplier-
free PR-QMFs, which are less regular than Daubechies
wavelet filters but have comparable frequency responses,
can give as good results while offering, at the same time, a
very reduced computational complexity.

2. The Discrete Wavelet Transform and the
Concept of Regularity

If x(t) is any square integrable function, then it can be
decomposed onto a set of square integrable basis
functions, constructed by dilating and translating a single
wavelet @(w), as follows [5]:

x© =Y, V2x,000tk)
jk
where :
o) = Hi(62)0(®
and

«m=gwﬁ%

¢(w) is called the scaling function. Hg(z) and Hi(z)
should satisfy the 2-band FIR PR-QMF bank conditions
[5]. Moreover, they must each have at least one zero at
z=-1, and z=1, respectively. In practice, the discrete
wavelet transform is computed using a dyadic binary
subband tree (fig. 1). In order to ensure that the infinite
product of the scaling function converges to a smooth
function rather than breaking into fractals, this latter
should have some regularity, i.e., a certain number of
continuous derivatives [6]. In [7], several algorithms are
developed to accurately compute the regularity in the
Holder and Sobolev spaces. In the remainder of this paper,
we shall use only H6lder regularity.

3. The Wavelet/PR-QMFs Transform based
Normalized LMS

The dependency of the LMS convergence on the signal
conditioning can be reduced considerably by applying the
wavelet transform defined in terms of (NxN) matrix T, to
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the input vector x(n), to form a second vector z(n) such
that
z(n) = Tuwx(n)

Tw is constructed out of the wavelet low-pass and high-
pass filters. The convolution boundary effects are handled
by periodizing the data vector x(n). If d(n) is the desired
signal, the autocorrelation matrix and the intercorrelation
vector of the new vector z(n) are given, respectively, by

Rz = E[z(n)z'(n)]
= E[Twx(n)xT(n)T5]
= TwaxT£
and
P4 = E[d(n)z(n)]
= Twpxd

where Rxx and Pxq are, respectively, the conventional
autocorrelation matrix and the intercorrelation vector of
the input data vector x(n). The error to be minimized is
defined as:

e(n) =d(n) - y(n)

The optimum Wiener solution which minimizes the mean
square error (MSE) is given by

8o = Ri'Pyy

Since Tw is orthogonal, then we can easily get back the
conventional impulse respone hop: of the filter, knowing
that

Bopt = Twhopl

By analogy with the normalized time-domain LMS, we
can define the NWTLMS as

g(n+1) = g(n) + Ra(m)z(n+De(n)
where
~-1 ~ -] ~1
R3(n) = diag[Zo (n) Z; () ... Zn. ()]

and N is the adaptive filter order. The diagonal elements
are estimated in the following way:

Zi(n) = BZi(n-1) + (1-B)(z°(m)), 0 < B < 1

Now, if we replace Ty, by a more general orthogonal
transform matrix T, which may not be normalized, then

Sopt = - Th,
pt M pt

and keeping the rest of equations unchanged, we get a
more generalized subband transform LMS (SBTLMS). In

974

order to ensure a good convergence of the algorithm, we
should make a good choice of the parameters o and B as
well as the initial conditions Z;(0). In practice, the
following choice is often made [2] :

a:.l_
N

and
B=1-a

The initial conditions are chosen as
Zi(0) = MG, 2(0),i=0, 1, ...,N-1.

where 33(0) is the initial variance of the data vector x(n).
For the NWTLMS, M is, of course, equal to 1, whereas,
for the multiplier-free PR-QMF matrix based NLMS, M is
greater than or equal to 1.

In fact, any paraunitary PR-QMF bank can be used to
form an orthogonal matrix as well. The only difference
from wavelets is that the multiplier-free PR-QMFs do not
lead to normalized transform matrices. They are designed
such that they have only the allowed coefficient values

h(n)=+2%+1,n=0, 1,2,... 2N-1.

where kp is an integer. They are, generally, called
suboptimal filters [5].

4. Simulation Results

System identification is often considered as a good context
for testing the performance of adaptive algorithms. This
context is used to evaluate the influence of the regularity
of the wavelet low-pass filter and the subband
decomposition structure on the convergence behavior of
the NWTLMS algorithm. The performance measure used
is given by

p(n) = E{(h(k) - hopr) ((K) - hopo)]

where hopy and h are the unknown system and the adaptive
filter impulse responses (16 coefficients), respectively.
This expectation has been estimated by the ensemble
average over 30 simulation trials. The channel and the
unknown system gains have been chosen to have unit gain
and the input signal x(n) to have a unit variance. Therefore
the output estimation error converges to the power
(variance) of the additive noise.

The simulations of the NWTLMS for different degrees
of regularity of the wavelet filters have been carried out
for an additive noise of about -70 dB and a channel which
correlates the input signal samples such that the EVR, i.e.,
the eigenvalue ratio of the input signal autocorrelation
matrix is about 50. For each case, the estimated error is
plotted versus time. In figure 3, we show the results



obtained when the decomposition structure level is 1
(fig.1), i.e., the signal is decomposed into two subband
signals only. We notice the dramatic improvements in the
convergence of the NWTLMS. The wavelet transform
succeeds in whitenning the colored input signal to a great
extent. This covergence increases as the regularity of
Daubechies filters is increased from 0.55, which
corresponds to a filter length of 4, to 2.18, which
corresponds to a filter length of 12. Figure 4 shows the
results of the influence of the subband decomposition
structure (dyadic (fig.1) and regular (fig. 2),
decomposition level=2) on the convergence behavior of
the NWTLMS. It is clear that the transform matrix based
on the dyadic subband tree (DST-NWTLMS) converges
much slower than the regular subband tree based
NWTLMS (RST-NWTLMS) for the same subband
decomposition structure level. Figures 5 and 6 show the
results obtained when using the following multiplier-free
PR-QMFs: filter 1=[2 6 3 -1, filter 2=[4 16 16 0 -4 1] and
filter 3=[-8 8 64 64 8 -8 1 1]. These filters, presented by
Akansu in [5], have frequency responses comparable with
Daubechies wavelet filters with the same duration, but are
less regular. In any case, the normalized multiplier-free
PR-QMF based LMS (NMFPRQMFTLMS) performs as
well as or better than the DST-NWTLMS.

S. Complexity Considerations

In order for the following discussion to have a meaning,
we consider, independently from any processor
architecture, that the multiplication complexity is higher
than the addition complexity which is, itself, higher than
the binary shift complexity. Moreover, the input signal is
considered to be real.

From the previous simulation results, we have noticed
that the most interesting results have been found for
wavelet filter lengths less than or equal to 12. For short
filters, the use of FFT based methods to reduce the
computational load of the convolution is inefficient.
However, there are some other methods which can handle
short filters and reduce the computational load by 30% at
most [8]. But this may be still unacceptable for real-time
applications. Therefore, suboptimal multiplier-free PR-
QMFs, which have the advantage of being multiplierless,
are more attractive. Let us consider, for the sake of
illustration, the 4 coefficients multiplier-free PR-QMF [2 6
3 -1]. It is clear that the convolution of the signal with this
filter can be performed only with a set of binary shifts and
additions.

6. Conclusion

In this paper, we have shown that the NWTLMS leads 10
dramatic improvements in the convergence rate of the
algorithm when the input signal is colored, even if the
subband decomposition level is only 1. We have shown
that the regularity of the wavelet filter does influence the
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convergence behavior of the NWTLMS. But this influence
is noticeable only for filter lengths not exceeding 12.

The regular subband tree structure based NWTLMS
has been shown to give a faster convergence than the one
based on the dyadic subband tree structure.

The multiplier-free PR-QMFs have been shown not
only to give as good results as the wavelet filters with
maximum regularity, but to offer, furthermore, a
computational complexity which is made up of only
binary shifts, additions and subtractions. This makes The
normalized multiplier-free PR-QMF transform based LMS
a good candidate for real-time applications.
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