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ABSTRACT

This paper introduces ountput-error LMS bilinear filters
with stability monitoring. Bilinear filters are recursive
nonlinear systems that belong to the class of polynomial
systems. Because of the feedback structure, such models
are able to represent many nonlinear systems efficiently.
However, the usefulness of adaptive bilinear filters is greatly
restricted unless they are guaranteed to perform in a sta-
ble manner. A stability monitoring scheme is proposed
to overcome the stability problem. The paper concludes
with simulation results that demonstrate the usefulness of
our technique.

1. INTRODUCTION

While linear filters and system models have been very use-
ful in a large variety of applications and are usually sim-
ple from conceptual and implementational points of view,
there are several applications in which they will not per-
form well at all.

A very common system model that has been employed
with relatively good success in nonlinear filtering appli-
cations is the truncated Volterra system model. Several
researchers have developed adaptive filters based on trun-
cated Volterra series expansions [3], [6], [7], [12], [13]. The
main problem associated with such filters is the extremely
large number of coefficients (and the correspondingly large
computational complexity) that is usually required to ad-
equately model the nonlinear system under consideration.
An alternate approach is to use nonlinear system models
with feedback. Just as linear IIR filters can model many
linear systems with greater parsimony than FIR filters,
there are a large number of nonlinear systems that can be
approximated by nonlinear feedback models using a rela-
tively small number of parameters. Consequently, one can
expect that the corresponding adaptive filters can be im-
plemented with good computational efficiency. This paper
is concerned with adaptive nonlinear filtering algorithmns
that employ bilinear system model satisfying the following
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difference equation

y(n) = olz(n—i)+ Y by(n - j)

=0 j=1
+ Z Z ¢ jz(n — i)y_(n - J) (1)
i=0 j=1

There is one major problem with bilinear system mod-
els in that most bilinear systems are inherently unstable.
By this, we mean that it is possible to find bounded in-
put signals that can drive the output signal to become
unbounded for almost any given bilinear system. Con-
sequently, it is very important to either develop adap-
tive bilinear filters that are guaranteed to operate in a
stable manner all the time, or equip the adaptive filters
with some sort of stability monitoring device that checks
the filters for any indication of unstable behavior. When
the test indicates potential instability, the system must
take proper actions on the filter coefficients to prevent the
adaptive filter from becoming unstable.

Even though the stability problem is of great impor-
tance for adaptive recursive nonlinear filters, there are
only few results available in the literature for combating
the problem. Fnaeich and Ljung [4] appended a Kalman
filter to the basic adaptive filter to ensure the stability of
the overall system. This approach is comptationally very
costly. The Kalman filter that stabilizes the system is
often significantly more complex than the basic adaptive
filter itself. The authors of this paper recently showed that
many exact realizations of extended least squares adaptive
bilinear filters are inherently stable in the sense that the
time average of the estimation error is bounded under rel-
atively mild conditions [9]. They have also presented LMS
adaptive bilinear filters [11]. However, they did not con-
sider the stability issue in [11]. Recently, Bose and Chen
[2] developed a conjugate gradient adaptive bilinear filter.
They incorporated a stability monitoring mechanism that
is somewhat similar to our method for their adaptive filter.

The purpose of this paper is to introduce a new scheme
to overcome the stability problems associated with most
adaptive bilinear filters. In particular, we develop output-
error LMS bilinear filters with stability monitoring. The
rest of the paper is organized as follows. Section 2 derives
output-error adaptive bilinear filters. Section 3 introduces
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the new stability monitoring scheme for the adaptive bi-
linear filters. Section 4 contains simmlation results that
demonstrate the usefulness of our technique. The con-
cluding remarks are made in Section 5.

2. LMS BILINEAR FILTERS

The basic problem of adaptive bilinear filtering may be
formulated as follows. Given a desired response signal
d(n) and an input signal z(n), we want to estimate d(n)
adaptively as

d(n) =Y ai(n = Dz(n— i)+ > b;(n — 1)d(n — 5)

Jj=1

r s
+3 Y cii(n - Da(n — )d(n — j).
=0 j=1
Note that the output of the adaptive filter is used in a
Tecursive manner in estimating the desired responmse sig-
nal. This approach belongs to the class of output-error
adaptive filters. Because of the recursive stracture of the
estimation process, the development of the adaptive bi-
linear filters is somewhat more complicated than that of
adaptive Volterra filters.
For compactness of presentation, let us define the in-
put vector Z, and the coeficient vector W, as

=0

2

Zn =[z(n),...,z(n — r),d(n - 1),...,d(n — s),

z(n)d(n — 1), z(n)d(n — 2), ..., z(n — r)d(n — )T, (3)
and
Wo = [ao(n), ..., ar(n), b1 (n), ..., bs(n),
co,1(n), co,2(n), ..., c,-,,(n)]T, (4)

respectively. The objective is to find a stochastic gradient
descent solution for the coefficients of the adaptive filter
which attempts to minimize the cost function

J(n) = E(d(n) — d(n))” = E(d(n) - Wi_1Z.)*  (5)

in a recursive manner.
The stochastic gradient descent solution is given by

d(d(n) - Wg‘.l Zn)2

Wn = Wn_]_ - ([1/2) aWn_l

v (6)
where g is a small positive constant that controls the rate
at which the adaptive filter converges. Note that d(r) and
therefore Z, are functions of W,,_;. Thus, the gradient in
(6) may be obtained as

A(d(n) —WT_1Zn) _ - ad(n — j)
- L 19n) _z. 4 ;1 bi(n — 1) 55—
+EZC;,,~(n— 1)z(n —i)aggvn*’:f)- ]
=0 j=1
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Equation (7) indicates the necessity of re-evalnation of the
derivatives of the past values of d with respect to W, _;.

An assumption commonly employed in the adaptive
IIR filtering literature is that u is sufficiently small such
that Wy 2 W,_o =~ ... n—~ [5]- Using this approx-
imation and the fact that d(n) is not a function of W,,_,,
we may write (7) as

-~

ad(n) ~ ad(n ~ j)
Wy = O +z;"’(" Vawnis,
J=
r N-1 -
o _a9d(n—j)
+}_; Z cia(n=Da(n gLl (@)
= =3
Let us define a new vector ¥,, as
_ 0d(n)
U, = Wy (9

Equation (8) can then be compactly written as

Un=Zat) bi(n—1)+ 33 cis(n—1)a(n - i)¥n_;.

=0 j=1
(10)
We are now in a position to summarize the output-
error LMS bilinear filter as follows:

a(n) =d(n) -WZL_,2Z,,

Jj=1

(11)

Y, =2Zn+ E{bj(n ~-1)+ Zc;,j(n ~z(n —i)}¥,_;,
- (12)

Wn = Wiy + pa(n),. (13)

The above algorithm has a computational complex-
ity of O(rs?) multiplications per iteration. The computa-
tional burden can be significantly reduced by recognizing
that rs+ s — 1 elements of Z, in (10) are delayed versions
of the other r + s + 2 elements of Z,. This motivates the
approximation of replacing the corresponding rs + s — 1
elements of ¥ with appropriate delayed versions of the
other r+ 5+ 2 elements of ¥. That is, instead of (12), we
could use

‘n=2n+i:{bj(n—1)+

Jj=1

=1

and

Zc-,,-(n —V)z(n —i)}¥a_,
= (14)

where ¥ and Z denote the vectors that contain the afore-
mentioned r + s + 2 entries of ¥ and Z, respectively.
We then construct an approximate version of ¥, which
is needed for (13), from the current and past values of ¥.
With this approximation, the filter requires only O(rs)
multiplications per iteration.

The algorithms described above are not gunaranteed
to be stable in the sense that the output d(n) may grow
without bound during adaptation. Therefore, the filters
maust be monitored at all times for any indication of unsta-
ble behavior. In the next section, we propose a stability
monitoring scheme to accomplish this objective.



3. STABILITY MONITORING

The basic philosophy behind the derivation of the adap-
tive bilinear system with stability moniotoring may be de-
scribed as follows. After each coefficient update, the sys-
tem will check the coefficients to see if they satisfy some
sufficient conditions which guarantee the stability of the
bilinear system generated by the adaptive filter. If the
coefficients satisfy the conditions, the update is complete
and the adaptive filter will wait for the next sample to ar-
rive. Otherwise, it will project the coefficients to a space
that satisfies the sufficient conditions.

The stability condition that we will employ is based
on a sufficient condition recently derived by the aunthors
[8] for time-invariant bilinear systems. We check if the
coeflicients satisfy the following:

lgi(n)} < 1, fori=1, 2,..., s, and

M=y Y leis(m)l < [T - las(m)D,

=0 j=1 I=1

(15)

where ¢1(n), g2(n),..., and ¢s(n) denote the zeros of the
polynomial ¢°(1 — Z;=1 bj(n)g™’), and M. denotes the
maximum absolute value of z(n) in some interval. Since
the above condition involves the calculation of the roots
of a polynomial, we first examine if the coefficients satisfy
another easily calculated sufficient condition [1]:

SOy + > cii(ms(n—i) <1-85  (16)

J=1 £=0

where § is a small positive constant (typically 0.001 or
0.01). The conditions of (15) are checked only if the coef-
ficients fail the simpler test.

If neither of (15) and (16) holds, we reduce the amount
of adjustment for the coeflicients in the hope that the
resulting update will pass the tests and guarantee the
boundedness of J(n) For obvious reason, we need to limit
the number of iterations for this adjustment. Based on
this idea, an algorithm of output-error LMS bilinear filter
with stability monitoring is sammarized below.

(T0) Wait for new sample. Set A =0

Error Calculation

(T1) a(n)=d(n)-WI ,Z.

Gradient Calculation

(T2) Calculate ¥, as described in Section 2 using (14).
(T3) e(n) = pa(n)¥,

Coefficient Update

(T4) W,, = W,_1 +£(n)

Stability Monitoring

(T5) If (7) holds, go to (T0)

(T6) If (6) holds, go to (T0)
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(T7) If A equals a pre-selected threshold, set W, = W,_,
and go to (T0). In our experiments we set the
threshold to 3.

(T8) A=A+1
(T9) Set e(n) =¢<(n)/2 and go to (T4)

Note that both of the conditions employed are only
sufficient. Also, the coefficient set that satisfy (16) is not
a proper subset of the coefficient set that satisfy (15) and
vice versa. The use of both the tests results in a more
robust stability monitoring system.

4. SIMULATION RESULTS

We now present simulation results that illustrate the use-
fulness of the foregoing algorithm. The results presented
are ensemble averages over 20 independent rums. The
problem considered in the experiments was that of iden-
tifying an unknown, time-invariant bilinear system with
r = g = 2. The coefficients of the unknown system were
given by

W°=[1,1,1,0.2,0.48,0.3,0.1,0.2,0.2,0.1,0.3]". (8)

The input signal z(n) was a white, zero-mean and pseudo-
random Gaussian noise with variance 0.2. Another white,
zero-mean, pseudorandom Gaussian noise that was uncor-
related with the input signal was added to the ontput of
the bilinear system. The resulting signal-to-noise ratio
was 20 dB. The adaptive filter was implemented with the
same structure and the same number of coefficients as that
of the unknown system. The step-size u was set to 0.0025.

We have conducted several experiments involving out-
put error adaptive bilinear filters with and without the
stability monitoring mechanism. The results indicate that
the adaptive filter without the stability monitoring device
suffers from significant stability problem. With the help
of stability monitoring scheme, the output-error LMS bi-
linear filter performed reasonably well. The evolution of
some filter coefficients with and without the stability mon-
itoring scheme is shown in Figures 1 (a) and (b), respec-
tively.

5. CONCLUDING REMARKS

We presented an output-error LMS adaptive bilinear fil-
ter equipped with a stability monitoring device in this pa-
per. Results of some preliminary experiments presented
showed that the system equipped with the stability moni-
toring device did not exhibit the unstable behavior shown
by adaptive bilinear filters that lacked such devices. It
appears that unsupervised operation of output-error LMS
adaptive bilinear filters may now be possible in practical
applications.

We are at present working on improving the system
in two different ways. The authors of this paper recently
presented a sufficient stability condition for time-varying
bilinear systems [10]. Early results of adaptive filters that
employ the new condition appear to be very promising.



Cascade or parallel realizations of certain portions of the
adaptive filter will facilitate easier stability monitoring.

This topic also is currently being investigated by the au- (1]
thors.
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Figure 1: Mean trajectories of filter coefficients
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