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ABSTRACT

In this paper we have introduced and analyzed a new
class of adaptive nonlinear filters referred to as partition-
based linear (Pl) filters. The operation of those fil-
ters depends on partitioning the observation space in
some fashion. Specifically, we have used here scaler
quantization as an example to illustrate the concept
of partitioning the observation space. Each partition
is then assigned an output based on a linear combina-
tions of observed samples in a moving window of finite
length N. The filters are shown to exhibit appealing ro-
bustness. Simulations include a novel approach to esti-
mating response-to-response variations in evoked poten-
tials (EP), buried in the on-going electroencephalogram
(EEG). Unlike the multi-channel filters currently used
in EP estimation, the P! filters do not require a separate
electrode to provide a reference signal. In addition, no
repetition of the stimulus is needed and the time of the
stimulus need not be known.

1. INTRODUCTION

The EP is an electrical signal produced by the brain in
response to some effective sensory stimulus. They are
generally buried in the ongoing EEG noise at signal-to-
noise ratios (SNR) of less than -6 dB. This low SNR
makes it very difficult to extract the EP response from
the observed signal. Ensemble averaging has been the
most widely used technique in evoked potential extrac-
tion and monitoring. Ensemble averaging estimates the
underlying response by averaging thousands of ensem-
bles. However, the estimated signal will loose the infor-
mation about individual response amplitude and laten-
cies. Aunon et al. [1] have proposed latency-corrected
methods based on averaging. These methods still suffer
from the same setback, namely they require repeating
the stimulus and taking the average.

An adaptive filter approach for processing EP sig-
nals uses multi-channel adaptive signal enhancers [3, 4].
A separate electrode is usually required to provide a ref-
erence EEG noise signal. These adaptive filters operate
under the assumption that the noise in the reference
channel and the signal are stationary and uncorrelated.
Unfortunately, the EEG data tend to be highly corre-
lated among the scalp electrodes.
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Wiener filtering of evoked potentials using a poste-
riori time-varying filter was proposed by deWeerd et
al [2]. Wiener filtering was not able to provide better
improvements in the SNR than that obtained by the
simple averaging technique. Westerkamp et al [3] have
recognized that the EP is a non-stationary signal. Since
Wiener filtering assumes that the Process is stationary,
it does not produce satisfactory improvements in the
SNR. The approach used in [5] is based on a temporal
partitioning of the observed signal. A different linear
filter is applied to the signal at each sample time after
the stimulus. This technique can be effective, but the
exact time of the stimulus must be known apriori. Fur-
thermore, it assumes that the data are cyclostationary.

In this paper, we introduce and analyze the PI fil-
ters, a new class of adaptive filters whose operation is
based on partitioning the RV observation space defined
by a size N moving observation window. Here, we focus
on quantization besed partitioning. Each partition is
then assigned an index and a corresponding set of filter
weights. Given that an observation vector lies in parti-
tion 4, the filter uses the corresponding set of weights w;
and forms an estimate by taking a linear combinations of
the samples in the observation vector. The filter weights
are derived to minimize the overall MSE between the fil-
ter output and the desired response.

Estimating a single response EP buried in EEG noise
is considered as an application for the proposed filters.
We show in the simulations that the proposed filters give
significantly lower mean-squared error than the simple
LMS filter in estimating single response evoked poten-
tials.

1.1. Filter Definition

The filtering problem consists of a given input sequence
{z(n)} comprised of a desired sequence {d(n)} repre-
senting the EP response and an undesired component
{n(n)}, representing the EEG noise. The task is to find
a system that will suppress the undesired noise compo-
nent while preserving the characteristics of {d(n)}. The
difference between {d(n)} and the filter estimate {d(n)}
constitutes the error sequence {e(n)}, and is given by,
{e(n)} = {d(n)} ~ {d(n)}.

Without loss of generality, an estimate is formed at
time n by sliding a window that spans N signal sample
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points. At each time n, the moving window produces
the observation vector,

x(n) (z(n),z(n - 1),...,2(n — N +1))
(z1(n), z2(n), ..., zn(n)). (1)

For notational simplicity, the time index n will be dropped.

Definition 1 The output of the Pl filter is defined as,
Fpi(x) = wlx, (2)

where X lies in partition 1, and w; is the weight vector
assigned to partition 1.

1.2. Partitioning Schemes

Depending on the application, the observation space
can be partitioned using several methods. A desirable
property of the partitioning scheme is to track signal
nonstationarities. Examples of the many possible parti-
tioning schemes include vector quantization (VQ), scaler
quantization, and rank permutations. Partitioning the
observation space using sample rank permutations has
been shown in [6, 7, 8] to be effective in impulse re-
jection applications. Here the mapping of the time-
ordered observation vector to the rank-ordered observa-
tion vector is shown to partition the observation space
with a set of N! distinct partitions. For example, the
6 possible permutations (partitions) of R* (N = 3)
are £; £ 22 < 23, 21 < z3 < 23, 22 £ 21 < z3,
z2 < 23 < 71, 23 < zy < z3, and z3 < z3 < 1.
Clearly, any observation vector x € R® must fall in one
of these partitions.

Perhaps one of the simplest methods to partition the
observation space is based on scaler quantization of RV.
Unlike the permutation partitioning of RY, the scaler-
based quantization process takes into account both the
amplitudes and the time correlations among the data.
The scaler-based quantization process is illustrated as
following. Let tx, for k = 0,1,2,..., L be a set of in-
creasing quantization levels. These values are obtained
according to some partitioning scheme such as simple
uniform quantization or using the LBG algorithm. The
levels to and tr represent the minimum and maximum
values of the input sequence {z}, respectively. Define a
vector of quantization level indices for the observation
samples as q = [g1, g2, ..., ¢~n]. The scalar quantization
operation is given by

Q(x)=q, (3)

where ¢; = k : tp < z; < tpt1,for i =1,2,...,N. Each
unique vector q defines a distinct partition. In this way,
the observation space is divided into z = L% disjoint
partitions whose union is the whole observation space
R¥ . These partitions can be sequentially indexed from
1 to z.

Consider also the case where the sample mean from
the observation vector is subtracted from each observa-
tion sample prior to quantization. In this case, the num-
ber of partitions in which an observation vector may lie
in is LY — 1. This mean subtracted quantization can

track signal variation with fewer levels than the straight
quantization method.

Once the partition index for an observation vector x
is determined, the P! filter forms an estimate according
to (2).

2. OPTIMIZATION

To derive the optimal set of weights for each partition,
the Pl filter output in (2) is rewritten as

Fp(x) =Y wixI(p(x) = i), (4)

where I(-) is the indicator function defined by I(true) =
1 and I(false) = 0, and p(x) is the partition index in
which x lies. Using this representation of the filter out-
put, the estimate MSE can be written as

2

J=E|d-) wixl(p(x)=1)] . (5)

Conditioning the expectation on the partition, and
summing over all partitions, reduces the MSE J to

oi—2 Z wlP;Pr(p(x) = i)+Z w?ng;P'r(p(x) =1),
i=1 =1

(6)
where 02 = E(d)?, R; and P; are the conditional cor-
relation and cross correlation matrices,

R: = E(xx"|p(x) =i) and P; = E(dx|p(x) = i).
7

This follows by assuming that the desired and observed
signals are jointly stationary. Differentiating J with re-
spect to each weight vector w;,

Vw,;J=0 = Riw; =P;. (8)

Assuming each of the conditional correlation matrices
are invertible, the optimal weight vectors are given by
w! =R;'P;, fori = 1,2,...,z. Thus, the overall opti-
mum weights are given by the Wiener solution for each
partition.

The Wiener solution, however, requires apriori knowl-
edge of the underlying random process which is not
available in many situations. Alternatively, an iterative
solution which uses no apriort information is obtained
using the LMS algorithm described in [9]. Thus, the
weight update at the beginning of I’th iteration is de-
fined by, )

witt = wl 4 2pe'x’, (9)

where j is the largest iteration number less than (1 +1)
such that both z' and z? occupy the same partition,
and p is the step size that regulates the rate of con-
vergence. In forming the estimate, a bias weight w,
has been used such that x = {1,z1,...,2n]%, and w =
[ws, wi,...,wn]T (Fig. 1). Provided that g is prop-
erly chosen, the filter weights converge to the optimum
weights w; and minimum J. Note that for each new
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Figure 1: Schematic of the adaptive LMS filter. Filter
comprises an N stage tapped delay line with N weights
and a bias weight.
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Figure 2: The PI filtering algorithm. The system first
determines the partition index i in which the observa-
tion vector is located and then uses the LMS algorithm
to update the corresponding weight vector w;.

observation, only one set of filter weights are adapted
(Fig. 2).

With partitions obtained using scaler quantization,
the Pl filter can accurately track various signal nonsta-
tionarities. Consider as an example, the restoration of a
chirp signal (Fig. 3) that linearly sweeps the frequency
spectrum with time. The chirp signal, corrupted by
zero-mean additive Gaussian white noise at a SNR of 0
dB, was used as the input to the P! filter. After training
the filter using the noisy and clean chirp signals as the
input and desired responmse, respectively, the resulting
frequency response of the filter at each time index n is
a bandpass with a linearly increasing center frequency
(Fig. 4). Clearly, the center frequency at time n cor-
responds to the local desired signal frequency. In fact,
at each time n, x(n) is mapped to a different partition
which shows that the scaler-based partitioning process
preserves temporal correlations among the data. Fur-
thermore, this example also illustrates that the Pl filter
can be effectively trained to track a varying tone. The
number of different tones that can be estimated using
the Pl filter is, however, limited by LY — 1, the number
of distinct partitions.

3. SIMULATION RESULTS

The Pl filter was tested on simulated human EP data.
The results have been compared with the standard LMS
linear estimates. Mean square error results have been
used as the criteria for comparison. The simulated EP
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Figure 3: A chirp signal linearly sweeping the frequency
spectrum with time.
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Figure 4: Frequency Response of the Pl filter at each
time n, (N =17, o = —c0,% =0, and t, = 00).

data have been generated using raised cosine pulses to
represent the individual peaks of the EP. Human EEG
data have been added to the simulated scalp recorded
responses. A total of 117 responses have been generated
with 64 samples per response at a SNR of -6.12 dB.
Fig. 5 shows three different simulated evoked responses
along with the background EEG noise.

Figs. 6 and 7 show the standard LMS and P! fi-
ter estimate, respectively, for one EP response that was
not used in the training set. Both the LMS and the
PI filter have used a window size N = 21 to form the
estimate. Two quantization levels (L = 2) have been
used for the PI filter after subtracting the local mean
from the samples in each window. The quantization lev-
els are given by tp = —oc0, #; = 0, and t; = oco. With
these parameters, the partition index will be invariant
to scale and bias changes in x. Note that the Pl fil-
ter preserves the peak and latency locations in the EP
better than the straight LMS. Fig. 8 shows the MSE
as a function of weights. Notice that the Pl filter pro-
duces a significantly lower mean-squared error than the
standard linear filter.
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Figure 5: Examples of simulated EP showing three of
the 117 evoked responses used in the simulations.
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Figure 6: LMS filter estimate of a single EP response
that was not used in the training data (N = 21).
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Figure 7: Pl filter estimate of an EP response that was
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and t; = o0).
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