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ABSTRACT

This paper presents an adaptive Volterra filter that em-
polys a recently developed orthogonalization procedure of
Gaussian signals for Volterra system identification. The
algorithm is capable of handling arbitrary orders of non-
linearity P as well as arbitrary lengths of memory N for
the system model. The adaptive filter consists of a linear
lattice predictor of order N, a set of Gram-Schmidt orthog-
onalizers for N vectors of size P + 1 elements each, and a
joint process estimator in which each coeflicient is adapted
individually. The complexity of implementing this adaptive
filter is comparable to the complexity of the system model
when N is much larger than P, a condition that is true
in many practical situations. Experimental results demon-
strating the capabilities of the algorithm are also presented
in the paper.

1. INTRODUCTION

Truncated Volterra series models have become very popular
in adaptive nonlinear filtering applications [6], [9]. Sev-
eral stochastic gradient (SG) and recursive least-squares
(RLS) adaptive Volterra filters have been developed in the
last fifteen years or so [1], [4], [5], [8], [10]. The stochas-
tic gradient algorithms are, in general, easy to derive and
implement. However, they show slow and input-signal-
dependent convergence characteristics. The recursive least-
squares algorithms, on the other hand, exhibit fast con-
vergence characteristics that are more or less independent
of the input signal statisti¢s. However, unlike their linear
counterparts, even the most efficient RLS Volterra filters
have significantly larger computational complexity than the
SG Volterra filters.

One approach to improving the convergence character-
istics of the stochastic gradient adaptive filters is to employ
structures that orthogonalize the input signal. Unfortu-
nately, the lattice realizations of Volterra systems for arbi-
trary inputs are over-parameterized [10]. For example, the
lattice realization of a second-order Volterra system with
N-sample memory requires O( N*) parameters even though
the system model itself has only O(N?) parameters. Conse-
quently, SG adaptive filters employing such structures will
have computational complexity that is comparable to the
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RLS algorithms. Thus, there is a real need for develop-
ing stochastic gradient adaptive filters with better conver-
gence properties than currently available techniques with-
out exorbitant increases in the computational complexity.
This paper presents an approach to developing such algo-
rithms using a recently developed method for orthogonaliz-
ing Gaussian input signals for Volterra system identification
problems [7].

The rest of the paper is organized as follows. The
next section describes the method for orthogonalizing Gaus-
sian signals for Volterra system identification problems. An
adaptive filtering algorithm that makes use of the structure
derived from the orthogonalization approach is presented in
Section 3. Experimental results are presented in Section 4.
The concluding remarks are made in the last section.

2. ORTHOGONALIZATION OF GAUSSIAN
SIGNALS FOR VOLTERRA SYSTEM
IDENTIFICATION

Consider a finite-memory and finite order Volterra system
represented by the input-output relationship:

P
y(n) = ho + Y Fplz(n)],

p=1

(1)

where z(n) is the input signal to the system, y(n) is the
output of the system, and

hplz(n)] =
- - N-
Ez,io :giml m,;m’_l hp(mi, ma, .-, mp)-
z(n —mi)z(n — mz)---z(n — my).
(2)

The above model incorporates the kernel symmetry with-
out any loss of generality. Also, the upper limit in the
summations above are all identical only for convenience.
The methodology for arbitrary upper limits is identical to
the one presented in the paper. The symmetric form coef-
ficients of the expression in (1) can be uniquely estimated
under some very mild conditions on the input signal.

It is convenient to represent the system of (1) using
vector notations for our derivations. Let

Eplz(n)} = X, (n)Hr ()
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where X, (n) and Hp, represent the vectors containing all
pth order products of the input signal appearing in (2) and
the corresponding coefficients, respectively. Let us also de-
fine the input and coefficient vectors as

X(n) = [1,X{(n), X7, (n),- -, XZ, (n)]T (4)

and

H = [h07H1Tr1Hg‘r""1H;r]Tl (5)

respectively. Now, we can rewrite (1) in a very compact
form as

¥(n) = X" (n)H. (6)

The basic problem considered in this section is the or-
thogonalization of the elements of the input vector X(n)
in (4). The orthogonality is in the minimum mean-square
error sense. We will assume that the input signal is Gaus-
sian and has zero mean value. The assumption that the
input signal has zero mean value is not restrictive in any
way since the mean value can be removed from any signal
and the bias term ko in (1) can account for any contribution
from the non-zero mean value of the input signal.

In order to derive the orthogonalizer, let us define a
smaller input vector

Xp(n)=[z(n),z(n ~1),---,2(n = N+ 1)), (7)

which consists only of the linear components in the in-
put signal set in (4). Using a lattice predictor [2], find
an orthonormal basis set for the elements of X.(n). Let
ui(n); i =1, 2, --., N represent the orthogonal basis
signals generated by the linear lattice predictor. Then

Elui(n)uj(n)} = 6(i - j), ®)
where §(n) represents the Dirac delta function.
The elements of the set {u1(n), u2(n), -, un(n)} are

Gaussian, zero-mean and uncorrelated with each other. Since
all of them have unit variance, they also have identical dis-
tribution functions. Furthermore, since uncorrelated Gaus-
sian processes are also independent processes, u1(n), uz(n),
-+, uy(n) are mutually independent random processes. In
particular, i

E{f(ui(n))g(wi(n))} = E{f(ui(n)} E{g(wi(n))}  (9)

whenever i # I,
Now, let us define a vector Up,i(n) as

Upi(n) =[1, ui(n), u?(n), ---, uf ()7, (10)
Let Qp be a lower triangular, (P+1)x(P+1) element ma-
trix that orthogonalize Up,i(n). Since all u;(n)’s have iden-
tical distributions, the same Qp will orthogonalize Up;(n)
for all values of 1. Furthermore, since the statistics of
Up,i(n) are known, we can pre-compute Qp. An exam-
ple of calculating Qp is given in [7].

Let Vp,i be an orthogonalized vector obtained as
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Vei=QpUp;. (11)

Let vp;,; denote the jth element of Vp,.
Theorem 1.

{ve1,m, (n)vpﬂ,m: (n)--- YP,N,my (1)

mi+mz+---+my < P}

is an orthogonal basis set for

{z™ (n)z™(n - 1)z™ (0 —2) ... 2™ ¥ (n ~ N + 1)

mi1+mz+-..my < P}

Note that vpio(n) = 1 for all i and that each m; takes
values from 0 < m; < P.

Proof. A proof for this theorem may be found in [7]. 1t
should be noted that the lattice structure for second-order
Volterra filters that was presented in (3] is a special case of
the above procedure.

‘3. AN EFFICIENT ADAPTIVE LATTICE
VOLTERRA FILTER FOR GAUSSIAN SIGNALS

Let z(n) and d(n) represent the input and desired response
signals, respectively, of an adaptive filter. The objective
of the adaptive Volterra filter is to model the relation-
ship between z(n) and d(n) adaptively using the truncated
Volterra series representation of 1. For the sake of com-
putational simplicity, we are interested in stochastic gradi-
ent adaptive filters. In order to improve the convergence
characteristics of the adaptive filter, we wish to employ an
adaptive version of the orthoganalization structure derived
in Section 2. Such an approach will result in the lattice
filter with different, but equivalent parameterization of the
system model.

The adaptive lattice Volterra filter consists of three stages.
The first stage is an adaptive linear lattice predictor for the
input signal z(n). This predictor can be implemented using
one of several algorithms available [2]. When the memory
of the system model is N samples long, the lattice predictor
has N —1 stages. A normalized LMS lattice linear predictor
can be realized using the following equations:

fi(n) = fi—1(n) — pi(n)bioy(n = 1), (12)

bi(n) = bi—1(n — 1) — pi(n) fi—1(n), (13)

pi(n+1) = pi(n) + Ty
-1

(14)
{£i(n)bizs(n = 1) + bi(n) fia(n)}

and



6 (n) =&} (n—-1)+ (1= 8){f(n) + b3 (n - 1)}. (15)

In the above equations, fi(n) and bi(n) represent the ith
order forward prediction error and backward prediction er-
ror values, respectively, at time n, pi(n) is the ith reflection
coefficient at time n, and g is a small positive constant that
controls the rate of convergence of the various stages of the
lattice predictor. The parameter 8 is bounded above and
below by 1 and 0, respectively, and controls the behavior
of the adaptive power estimators. Usually, 8 is chosen as
(1~p). The above equations are implemented for each stage
in a sequential manner. When the adaptive coefficients fil-
ter converge in some sense to a neighborhood of their op-
timal values, the backward prediction error sequences will
be nearly orthogonal to each other in the minimum mean-
square error sense. However, the backward prediction error
signals are not unit variance signals.

The second stage of the adaptive lattice Volterra filter
creates N vectors of P + 1 elements each as

Bri(n) =[1, bi(n), b3(n), ---, bF(n)]7;

(16)

t=0,1,--- N -1.

As discussed in the previous section, it is possible to design
a Gram-Schmidt orthogonalizer for B p,i(n) that is indepen-
dent of the signal statistics when the input signals are Gaus-
sian. However, to account for potential variations from the
Gaussian distribution of the elements of Bp,i(n), we will
employ adaptive Gram-Schmidt orthogonalizers for each
Bp,i(n). Let u;;o(n) denote the jth element of Bpi(n),
ie.,

ui,50(n) = bl (n). (17)
Then, the equations that describe the Gram-Schmidt or-
thogonalizers that employ a normalized LMS adaptation
algorithm are as follows:

uit,m(n) = uit,mo1(n) — @i t,m=1(n)8i,m—~1,m—1(n)

- l=m+1,... P

(18)
@itm(n+ 1) = ait,m(n) + ;‘;—M(Ln)u.-,z,m(n)u;,m,m(n)
’ (19)
and
:/lz,m(n) = ﬂ:/?,m(n - 1) + (1 - ﬂ)u;’z,m (n) (20)

When the coefficients of the processor are close to the
optimum values, the signals {#imm;m=0,1,..., P}, which
are the output signals of the adaptive orthogonalizer for
Bpi(n) will be approximately uncorrelated with each other.
Furthermore, as a consequence of the results of the previous
section, when the input signal is Gaussian, all the elements
in the set {uimm;i = L2 ,N-1, m=0,1,---, P} are

approximately uncorrelated with each other. For the rest
of the discussion we will denote u; m m (n) using vi,m(n).

The third stage of the adaptive filter is the Jjoint process
estimator. The signal set that is used for Jjoint process es-
timatior is obtained by nonlinearly combining the various
vim(n) as

8iiag,nin(n) = Ul,il(n)vzyia(n) e ‘vN,iN(n) ’
(21)
i+i2+---+iy <P

According to Theorem 1, the elements of the set described
by the above equation will be orthogonal, or at least close to
orthogonal, when the adaptive filter has converged to nearly
optimal values and the input signal is Gaussian. Therefore,
it is reasonable to develop the adaptive filter by individually
adapting the coefficients of 8iy iz, ,in(n). Let {yi(n);k =
1,2,---, M} represent an ordered arrangement of all signals
8iy,i,,in (1) involved in the joint process estimation. Here
M represent the total number of coefficients in the in the
joint process estimator. The following equations represent
a normalized LMS joint process estimator for the adaptive
lattice Volterra filter.

ex(n) = ex—1(n) — wx(n)yx(n) (22)

wi(n + 1) = wi(n) + T2 (m ex(n)yx(n) (23)

and

Ri(n) = BRL(n — 1) + (1 - B)yi(n). (24)
In the above equations, the sequence of estimation er-
Tors are initialized using eo(n) = d(n).

4. EXPERIMENTAL RESULTS

In this section, we will present the results of an experi-
ment that demonstrates the properties of the adaptive lat-
tice Volterra filter when its input signals have narrow band
characteristics. The results presented are ensemble averages
over fifty independent simulations of a system identification
problem. The unknown system was a second-order Volterra
filter described by the following input-output relationship:

y(n) = — 0.78z(n) — 1.48z(n — 1) + 1.39z(n - 2)

+0.04z(n - 3) + 0.542%(n) + 3.72z(n)z(n — 2)

+ 1.86z(n)z(n ~ 2) — 0.76z(n)z(n — 3)

- 1.622%(n — 1) + 0.76z(n — 1)z(n — 2)

= 0.12z(n — )z(n - 3) + 1.412%(n — 2)

= 1.52z(n — 2)z(n - 3) — 0.132%(n - 3)
(25)
This system is identical to the one used in Example 2 of
[5]. Four different types of input signals were used in the

simulations. Each signal set was generated as the output of
a linear system with input-output relationship
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Figure 1: Mean-squared estimation error of the adaptive
lattice Volterra filter for four different input signals

z(n) = bz(n —1) + V1 —b%(n), (26)

where {(n) was zero-mean and white Gaussian noise with
unit variance and a was a parameter between 0 and 1 that
determined the level of correlation between adjacent sam-
ples of the process z(n). Experiments were conducted with
a set to 0.00, 0.50, 0.90 and 0.99. When b = 0, the input
signal is white. As the parameter b approaches 1, the signal
characteristics become highly lowpass in nature. The de-
sired response signals were generated by passing the input
signals described above through the unknown system, and
corrupting the output signals with additive zero-mean and
Gaussian noise with variance 0.1. The measurement noise
sequence and the input signal x(n) were mutually uncorre-
lated. In all the experiments, s and B were chosen to be
0.001 and 0.999, respectively. Figure 1 displays overlayed
plots of the squared estimation error signal, averaged over-
aged over the fifty runs. These error curves were further
smoothed by time-averaging over ten consecutive samples.
It can be seen from the figure that the rate of convergence of
the adaptive filter is similar in all cases, in spite of the fairly
large disparity in the spectra of the signals employed. It ap-
pears from the results of this experiment that the ob jective
of designing an adaptive filter that is relatively insensitive
to the statistics of the input signals has been achieved.

5. CONCLUDING REMARKS

This paper presented an adaptive lattice Volterra filter.
The filter is based on a recent result for orthogonalizing
Gaussian signals for Volterra system identification prob-
lems. The results of a limited number of experiments pre-
sented seem to indicate that the filter has good convergence
characteristics. Further performance evaluations are neces-
sary to understand the properties of the adaptive filter when
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higher-order system models are employed and also when the
input signals are not Gaussian distributed.
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