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ABSTRACT

In this paper, a new fast LMS-based adaptive
algorithm is proposed. It is derived by incor-
porating a damping force in the LMS update
recursion in analogy with the force acting upon
a damped planar pendulum. An expression for
the evolution and the steady-state behaviour for
the mean weight vector is developed. This ex-
pression provides a mathematical bound which
constrains the parameter that controls the max-
imum contribution of the introduced dam ing
force. Simulation results show an improve(F ro-
bust performance for the new algorithm as com-
parecf with the conventional LMS algorithm in
smoothly tracking the optimal solution in cor-
related and nonstationary power environments,
especially, in the presence of plant noise.

1. INTRODUCTION

Although the LMS algorithm is relatively simple to im-
plement in practical applications, it is not always satis-
factorily capable of tracking the optimal solution on the
MSE surface. Therefore, a lot of work in the literature
addresses several modified LMS-based techniques with
improved convergence characteristics [1 — 4]. The LMS
weight update recursion is given by

Wyn+1)= WN(n)+2ue(n)XN(n) (1)

where Wy (n) is the N x 1 weight vector at time n,
Xn~(n) is the input signal vector, u is the updating step
size, and e(n) = d(n) — X% (n)Wy(n) is the prediction
error, where the scalar d(n) is the desired signal.

The new gradient adaptive algorithm proposed in
this paper, is developed by introducing a damping force
to the LMS update recursion analogous to the force
governing the motion of a damped planar pendulum.
The introduced damping force is controlled by a scal-
ing function which largely reduces the force effect at
steady-state. An analytical expression for the evolu-
tion of the mean weight vector is presented to demon-
strate its convergence to the optimal steepest descent

weight vector. Finally, simulation examples are pre-
sented to demonstrate the advantage of implementing
the new algorithm in achieving a faster rate of conver-
gence with less misadjustment as compared to the LMS
algorithm in noisy correlated and nonstationary power
environments.

2. ALGORITHM DERIVATION

The analogy between the motion of a planar pendulum
and the convergence of the weights towards the global
minimum of the MSE surface presented in [1], will be
extended to the case which emulates the dynamics of
a damped pendulum, in order to derive a robust and
faster adaptive algorithm.

Note that a planar pendulum is affected by a damp-
ing force of magnitude [5]

&l (@)

where the damping constant ¢ is positive, and § is
the angle between the pendulum and its steady-state
position. Let the filter coefficient w;(n) be associated
with the pendulum mass m; an analogy similar to the
one adopted in [1]; then the rate of change of the angle
f can be associated with the rate of change of the MéE
surface gradient, consequently

d9  dVe(n)

dt dt ©)

where ~ denotes the analogy between the two quan-
tities, and Ve(n) = —2e(n)Xn(n) is the LMS noisy
gradient estimate. The gradient rate of change can be
in the limit approximated as follows

dVe(n) _ Ve(n) - Ve(n - 1) (4)
dt T

where T is the sampling period. The proposed modified
LMS recursion is of the form

W (n+1) = Wy(n) + 2ue(n)Xn(n) + & dVdct(n) 5)
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where k is a positive scaling parameter. As stated in
Eq. (2), the contribution of the damping force has to be
positive for all time, irrespective of the sign of Ve(n).
Thus in the derivation for the new algorithm, the nega-
tive sign in the definition of the noisy gradient estimate
will be disregarded. After substituting for the estimate
of the gradient rate of change in Eq. (4), and replac-
ing the gradient estimate Ve(n) by its value, Eq. (5)
reduces to

Wy(n+1) = WN(n)+(2u+n)e(n)XN(n)—ne(n—l)XN(n—(l;

6
Eq. (6) above represents the final form of the recur-
sion for the new algorithm. Note that to make use
of the sign fluctuation in Ve(n), the actual, not the
absolute, value of the new term is introduced in the
LMS update recursion. The scaling factor 7 is assumed
to be a time varying exponential function of the form

n=rezxp (_ﬁf , where r is a positive parameter. It

is clear that this proposed form for n(n) will effectively
reduce the contribution of the introduced damping force
for small values of e(n), while accentuating that contri-
bution for large e(n).

3. STABILITY ANALYSIS

Several approaches can be followed to study the sta-
bility of any adaptive algorithm. The motivation, how-
ever, Is to analyze our new algorithm by examining the
behaviour of the mean weight vector. As analysis un-
folds, it will be shown that the parameter r must satisfy

certain conditions in order to achieve a stable conver-
gence for the mean weight vector towards its optimal

value.

In order to simplify the analysis, we will assume
that both Xy (n) and d(n) are stationary and uncor-
related with both Wy (n) and 5(n). This assumption
holds whenever the mean values of Xy (n) and d(n) are
changing more rapidly than the mean values of Wy(n)

and 7(n), which is usually the case at steady-state. In
the sequel, we are going to make use of the following
definitions

Ryy = E{Xn(n)X[(n)},  ii(n) = E{n(n)} } -

Py = E{d(m)Xn(n)}, Wi (n) = E{Wn(n)}

Using Eqs. (6) and (7) as well as the assumption stated

above, the expected value of both sides of Eq. (6) fol-
lows immediately as

Wy(n+1) Wi (n) + (26 + 7(n)) Py
(26 + (n)) Ry y Wy (n)

= A(n)Py +7(n)RynWpy(n—1) (8)

which can be written as

Wa(n+1) = [Iyy-—(2u+ A(n)RNNIW N (n) + 24Py
+ {n)RnyWy(n-1) (9)

The input autocorrelation matrix Ry~ can be decom-
posed into Ryy = QNNANNQ%N, [6], where Ay

is the matrix of eigenvalues of Ryy, and Qup is the
modal matrix of eigenvectors of Ry . Then, substi-
tuting the decomposed form of Ryx in Eq. (9), and

pre-multiplying Eq. (9) by Q% ,, yield

Wy(n+1) = [y - (2u+ () Axn]Wa(n)
+ ZulsN + ﬁ(n)ANNV-'VN(n -1) (10)

where
W)= QEyWr(n), Py=QLyPy (1)

Furthermore, since n(n) is an exponentially damped
function, we ¢an assume that it has a time-invariant
mean value. Then the N decoupled scalar equations
are

Biln+1) = [1-(2p+ F)N]@:i(n) + 2up;
+ Aldi(n-1), 0<i<N-1 (12)

At this point, the z-transform is used to solve for
wi(n). Let v; = 1 — (2u + 7)Ai and o = 2y, then the
corresponding z-transform of Eq. (12) is

2 (1)

(22 = viz)wi(0) +
22— yiz - ik

Wilz) 2% — yiz — 7N

ap;z
(22 =iz — M) (2= 1)

+ (13)

Then, by using partial fraction expansion, we obtain
the following solution for w;(n)

@i(n) = @i(0)[A1(r1)" + Ba(r2)™) + @i(1)[ Az (r1)"
+  Ba(r2)"]+ api[As + Bs(r1)™ + Ca(r2)"],
0<i<N-1 (14)
where oy
rz= 3 F S0 + 470} (15)

and the constants appearing in Eq. (14) are defined as

i e — ra=y —_ _1 —

follows; A; = nor B1= 25R, A = - B2 =
1 -
Az =

— 1 —
T Ty B = ety Os =
1
ir;—l)(r;-r;)'

Note that, Eq. (14) guarantees a monotonic conver-
gence for the mean weight vector provided that 1,2
are real and less than unity in magnitude. To find the
steady-state value of 123;(11), note that due to its ex-
ponentially damped behaviour, the steady-state mean
value of 7)(n) is zero. Therefore, it can easily be shown
that _

lim @wi(n) = Ll

n—oo ‘

(16)

Thus, regardless of the filter weights initial conditions,
Eq. (14) leads to convergence to the optimal steepest
descent weight vector as per Eq. (16), [6].

Under the assumption of stationarity in the input
signal, the input autocorrelation matrix is symmetric
and positive semi-definite; therefore having N real non-
negative eigenvalues as stated in [7]. Accordingly, it is
guaranteed that both r;, are real, thereby, yielding
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non-oscillatory weight trajectories. The unity bound
condition for stability that restricts |r 5| can be easily

simplified to get
0< (v +475))%F <2— (17)

Note that the maximum value of ¥; is equal to 1; thus
the condition of Eq. (17) can be written as

)3
0< (V¥ +47M)7 <1 (18)

Since the lower bound is always satisfied, we will elabo-
rate on solving for the upper bound of Eq. (18). There-

fore, as a function of ¥;, Eq. (18) reduces to

—(1-47A)T <1-(u+ @A <(1-47r)F  (19)

It is obvious that if 7j is set to its steady-state zero value,
Eq. (19) reduces to the well-known bound derived in

(6] for the LMS step size; 0 < u < .- In order to
alwa{ls have a real bound of convergence, we substitute

for the maximum value assumed by the constant g in
Eq. (19), which is the positive constant r, thus yielding

—(1-4rA\)T <1—(2u+rhi<(1-4r2)F (20
It follows that for 1 — 4r); > 0, » must satisfy

1
0<r<4—/\; (21)

Now, as far as Eq. (21) and the well-known bound
for the LMS convergence are satisfied, we can always
guarantee that 1 — (2u + )X < (1 —4r);)2. However,
the left hand inequality of Eq. (20) will not be satisfied
unless the positive parameter r is constrained with an
upper value computed according to

-(1- 4r/\,')é =1-(2u+ 1)) (22)

Moreover, the upper bound of r is determined by solv-
ing Eq. (22), whenever the zero crossing of 1—(2u+r));
i; less than the maximum value specified in Eq. (21);
that is

1 1 3
—_— -2 —_ 0 > — 23
N O T R Ew (23)

Note that, the value of r obtained by solving Eq. (22)
will always satisfy Eq. (21) for values up to u = b
Thus a theoretical upper bound on r is provided by Eq.

(22) for s)\i., < p< ;—y—:ﬂ—:—; otherwise, the bound of

Eq. (21) applies.
4. SIMULATION RESULTS

In this section simulation examples are presented to
demonstrate the improved convergence rate with the
smoothing property provided by the new proposed al-
gorithm. A comparison with the conventional LMS al-
gorithm is performed in correlated and nonstationary
power noisy environments.

Case 1: In this case study, the improved performance
of the new algorithm will be demonstrated by identify-
ing a 5-tap FIR system in a noisy environment with

a varying-power excitation input. The system noise is
a zero-mean white Gaussian sequence of (.01 variance,
where the excitation signal is zero-mean Gaussian with
variance varying from 0.25 to 1 and finally to 4 at iter-
ations 1000 and 2000, respectively. Such environment
is commonly encountered in case of installing adaptive
systems in teleconferencing rooms [8]. Fig. 1(a) rep-
resents the results of implementing both the new and
the LMS algorithm for the same value of 4 = 0.001 and
r = 1, where in, the new algorithm exhibits a largely in-
creased speed of convergence. Since the new algorithm
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Figure 1: Trajectories for w,(n).

reduces to the LMS at steady-state, for the same of 4,
both will result in an identical weight misadjustment,
as shown in Fig. 1(a). On the other hand, increas-
ing the speed of convergence of the LMS algorithm, by
setting u = 0.008, causes large jitters in the trajecto-
ries of the system parameters, as shown in Fig. 1(b).
Therefore, the proposed algorithm exhibits robustness
against variations in the input excitation power with
relatively faster rate of convergence as compared with
the LMS algorithm.
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Figure 2: w3(n) for the same u with correlated
input.

Case 2: In several practical applications, adaptive
filters are implemented to perform in correlated and
noisy environments. Such environments usually impose
limitations on the performance of adaptive algorithms.
These limitations are attributed to the sensitivity of
adaptive algorithms to the disparity in the eigenvalues
of a given input autocorrelation matrix, which is usually

the case in_correlated environments.
In this simulation example, the behaviour of the new

algorithm is examined in identifying the following 5-
tap FIR system h = [-0.51 3 2.5 — 2.5] with a corre-
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lated excitation signal. The correlated signal was ob-
tained by passing a zero-mean white Gaussian noise
of unity variance in the all-pole system, [2], y(n) =
0.44z(n) + 1.5y(n — 1) — y(n — 2) + 0.25y(n — 3). The
system identifier is corrupted with a 0.0225 variance
zero-mean white Gaussian measurement noise, which
was generated independent, in the statistical sense, of
the system input signal. Fig. 2 depicts the third weight
trajectory for the adaptive filter over one realization for
BLMS = pNew = 0.005 with r = 0.22. In this figure we
note the superiority of the new algorithm over the LMS
In its ability to more rapidly track its pre-assumed op-
timal value. Increasing the speed of convergence for the
LMS algorithm was experimentally achieved by setting
#rms = 0.04. As shown in Fig. 3, increasing purars
causes an increased level of misadjustment in the weight
trajectory. The stability of the new algorithm in this
critical environment is verified by evaluating the mean
square error over 50 realizations, which is shown in Fig.
4 compared to the MSE of the LMS for the same value
of p = 0.005. The LMS mean square error for #=0.04
is shown in Fig. 5, which suffers from significant jitters
in the entire time span.
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Figure 3: ws(n), for prys = 0.04 with corre-
lated input.
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Figure 4: Mean Square Error for the same L.

5. CONCLUSIONS

In this paper, a new gradient-based adaptive algorithm
was derived by embedding a force, analogous to that
controling the dynamics of a damped planar pendulum,
within the conventional LMS recursion. The proposed
algorithm was shown to exhibit a faster rate of conver-
gence with a smaller adaptation step size as compared
with the conventional LMS algorithm. This new feature

enhances the robustness and the smoothing property
in tracking the filter optimal state. A bound on the
constant that controls the contribution of the damp-
ing force was derived by means of stability analysis as-
suming typical environmental restrictions, as well as a
stable mean weight vector. However, the performance
of the new algorithm can be optimized by the proper
choice of this constant according to the operating en-
vironment. The improved behaviour for the new algo-
rithm was demonstrated by means of simulations under
correlated and nonstationary power environments, cor-
rupted with measurement noise.
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Figure 5: Mean Square Error for Lrms = 0.04,
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