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ABSTRACT

In this paper, we present a new method to estimate
spectrum transition of a.nonstationary signals in low
signal-to-noise ratio (SNR) cases. If the spectrum tran-
sition pattern is complex and/or there are large dif-
ferences in the transition patterns among the individ-
ual nonstationary signals, it is difficult to estimate the
transition pattern stably by the previously proposed
time-varying AR modeling because the results are con-
siderably dependent on the choice of the basic functions
to be used. We propose a new approach of modeling to
estimate the spectrum transition of the nonstationary
signals by using a linear algorithm without assuming
any basic functions. Instead of basic functions we use
the spectrum transition constraint. By applying this
method to the analysis of vibration signals on the in-
terventricular septum of the heart, noninvasively mea-
sured by the method developed in our laboratory using
ultrasonic, spectrum transition pattern is clearly ob-
tained during one beat period. The proposed method
will serve a tool for the noninvasive acoustic diagnosis
of heart diseases in near future.

1. INTRODUCTION

Much work has been done on the parametric spectrum
estimation using autoregressive (AR) model. A strong
restriction of these methods lies in the necessary as-
sumption that the signals may be considered to be
stationary over the observation interval. Time-varying
parametric approaches of modeling have been proposed
to overcome this limitation and to take the effects of
nonstationary signals into account explicitly. To esti-
mate the parameters using a linear algorithm, the un-
known time-varying parameters are approximated by
linearly weighted combinations of a small number of
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known functions. The choice of the basic functions is
an important part of such modeling process. A con-
venient way is to replace the time-varying coefficients
with their second-order expansion [1], or an arbitrary
order expansion {2],(3]. Legendre [4],[5], Fourier [6],
prolate spheroidal [7], and B-spline [8] are usually cho-
sen for the basic functions. Since the number of un-
known parameters is large, efficient equivalent repre-
sentations for the modeling have been also proposed
such as lattice filters [2],(7],[9]-

However, if the spectrum transition pattern is com-
plex and/or there are large differences in the transition
patterns among the individual nonstationary signals, it
is difficult to estimate the transition pattern stably by
choosing a set of basic functions a priori.

We have proposed a method for analyzing the spec-
trum transition of the multiframe signals of the fourth
heart sounds detected during the stress test [10]. In
the method, however, the analyzable signals are lim-
ited to multiple short length signals and the spectrum
transition pattern between these signals are obtained.
In this paper, by modifying the method we propose
a new approach of modeling to estimate the spectrum
transition of a nonstationary signal by using a linear al-
gorithm without any basic function. We also propose a
singular-value-decomposition (SVD)-based method to
obtain more accurate nonstationary AR coefficients ac-
cording to the above-mentioned linear optimization in
low SNR cases.

In order to noninvasively diagnose the acoustic char-
acteristics of the heart muscle, it is necessary to mea-
sure the small vibration signals on the heart wall from
the chest surface and analyze the resultant nonstation-
ary signal during one beat period.

For the former problem, we have developed a new
method to noninvasively measure a small vibration sig-
nal on the heart wall using ultrasound [11]. For the lat-
ter problem, we apply the developed time-varying mod-
eling to the nonstationary small vibration signals on the
interventricular septum in order to diagnose the acous-
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tic characteristics of the heart muscle. These charac-
teristics and the transition patterns may be applied to
acoustic diagnosis of heart diseases.

2. PRINCIPLE

Let us divide an original nonstationary signal y(n) into
succeeding F short signals {z(n;j)},n =0,1,...,N —
1,=0,1,..., F —1, each is called by a frame, where F°
is the number of frames. Let us assume that each frame
signal z(n;j) be an AR signal of order M, represented
by the backward recursion such that

z(n; ) = Za.(y) e(n+45) +e(n;j) (1)

=1

where e(n;j) is a stationary white noise process of
the jth frame with zero-mean and variance o2, and
{ai(§),i = 0,1,...,M} are linear predictive coefficients
of the jth frame signal (ao(j) = 1) . We assume that
each signal z(n;j) is stationary over the jth frame and
the AR coefficients {ai(j)} are slowly time-varying be-
tween the succeedmg frames. When the length of each
frame signal is short and the SNR is low, to achieve a
meaningful spectrum transient pattern of nonstation-
ary signals when the length of each frame signal is
short and the SNR. is low, we must design a new cost
function J in such a way. that the resulting solution
is sufficiently smooth under the assumption that the
AR parameters over the succeeding frames do not vary
rapidly. In addition to this assumption, we assume that
the differences {Aa,—(j)défa,-(j) —a;(j— 1)} between ith
AR parameters of the succeeding frames are random
dra.wmg from a stationary Normal distribution hav-
ing zero mean and variance . Thus, the framed AR
parameters {a;(j),i = 1,2,..,M,j = 0,1,. -1}
are assumed to be from a process with independent

increments. This model is, therefore, specified by a
set of parameters {a,(O) i=1,..,M}, {Ag(j),i =
1,..,.M,j=12,.. }and{o',,z_l wM}. To

determine the spectrum transient pattern w1thout any
basic functions as is done in existing time-varying spec-
trum estimation algorithms, we introduce the following
constrained least-square modeling in the formulation of
the cost function J as minimizing the normalized resid-
ual power subject to the condition that the transition
power of the ith set of AR parameters equals the con-
stant ¢?. Using the method of Lagrange multipliers,

_ EnllemD Pl Ny B Aa(i) P — o
J o= En;[l z(n;5) 2] ;A'{EJ“A () Il -},

(2)

where Aiis a Lagrange multlpher Let us define Py =

F(N- M)Z Zn_o Ha(n; )12, A= A M
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o} (F - 1), a (N M)-dimensional vec-
tor xj = [2(0;7),2(1;5), -, a(N =1 — M; )], a M-
dimensional vector a; = [al(J) aM(])]T where the
superscript T' denotes the matnx transpose (N — M)-
by-M matrix X;:

and 2 =

xgl;j; (I(M;J') \
z(2;7 oo z(M+ 15
XJ = . . . ’
z(N — M; j) z(N - 1;j)
a F(N — M)-by-FM matrix G:
Xo On_mm On_m.m
c=| X X E ’
: : ) On_M M
Xro1 Xro XrF-1
and a FM-by-FM matrix A”:
Op, M O, M
A= Ing T
: OM,M
Opm,m Ing, T’

where On, ~, and Iy, N, denote a N;-by-N; zero ma-
trix and a N;-by-N, unit matrix, respectively, and I' is
a M-by-M diagonal matrix IV = diag(A{, A5, ..., Ayy)-

p— —

Let ) and ¢’ be M-dimensional vectors (A, A}, -- -,
') and (o, 0, -+, a)T, respectively. By using
these matrices, vectors, and the relation

j
aj=ag+) Aa,(j=12.,F-1), (3
k=1

where Aa; is a M-dimensional vector of [Aa;(j), -
Aapr(§)]T. The cost function J’, which is obtained by
multiplying J in Eq. (2) by PoF (N M), is rearranged
as follows:

-—»T—>
=(X+GAT(X+GA) - (ATAA-X ') (4)

where A = (ag ,Aa; T, Aap_,T)T and X=(x,T,
x1T, -+, xp_1T)T. Taking the derivatives of J' with
respect ag, Aaj, and {A}, the following simultaneous
equations are obtained.

(GTG-A)A = -GTX, (5)

F-1
Y AGG)P —o2=0.  (i=1,2M) (6)
Jj=1



Therefore, it is concluded that using the transition con-
straint of Eq. (2), the solutions A of the AR coefficients
of F frames are simultaneously obtained from

A =—(GTG-A)*-GTX, (7)
where * denotes the generalized inverse operation. By
substituting Egs. (5) and (7) into J’ of Eq. (4), the
achieved minimum cost J/;,, is given by

. T
Jrin=XTX+XTGA + X

i
.

(8)
Thus, the spectrum transient pattern is determined
from the resultant estimates of the AR coefficients of
each frame. In this paper, we assume that the variance
of every order i of the AR parameters {a;(j)} has the
same value, that is, o2 = 62 = - .. aﬁd.—ifp’z/M, and
then \{ = Xy =... = /\jwdéf)\’. We describe how to au-
tomatically choose the value of p'> = o2 + .- + /2 in
the next section. ‘

After determining the average value p'2/M of the
variance o7 of AR parameters, the Lagrange multipli-
ers A; in A’ of Eq. (7) must be adjusted so that the
constraint of the second term of Eq. (4) or Eq. (6)
is satisfied. By finding a zero of the function ( =
Zf:ll ||Z;;||2 — p'? which changes sign based on the
bisection method, the optimization of Eq. (5) under
the constraint in Eq. (6) can be done in a simple itera-
tive fashion. When the SNR is low, in order to improve
the accuracy of the estimates, we apply the SVD-based
approach [12] to the above modeling.

3. EXPERIMENTAL RESULTS

We applied this method to the analysis of small vibra-
tion signals y(n) on the interventricular septum in the
heart wall of a normal man of 54 years old in Fig. 1(c)
for the noninvasive acoustical diagnosis of myocardial

One beat signal y(n) in the first beat period in Fig.
1(c) is divided into succeeding 27 short frame signals
z(n; j), each of which has 30 points in length, by multi-
plying the Hamming window with a length of 30 points.
That is, each frame signal is about 150 ms in length
since the signal is A/D converted at a sampling period
of 5 ms. Adjacent short signals overlap each other by
their three-quarter-length. Since each duration time of
the first heart sound (I) and the second heart sound

(1) in Fig. 1(b) is about 150ms in length, let us as- - -

sume that each frame signal z(n;j ) is stationary over
each frame.

Since the SNR is low and the duration time of each
frame signal is very short, there are large fluctuations
and many phantom peaks appear in spectra of Fig.
2(a) estimated by independently applying the discrete
Fourier transform (DFT) to each frame signal (N=30,
F=27).

On the other hand, by applying the proposed method
(M = 8) to the same multiframe signals, the resul-
tant spectrum transition patterns are shown in Fig.
2(b) for the same signal as Fig. 2(a). In these experi-
ments we found that the optimum value of ) is chosen
as follows: As the value of A is increased, though the
tra;lsition restriction becomes stronger, the third term
—t —

Moo =N Zf:ll |Aa;|f? of J.,;, in Eq. (4) is in-

—)T—P
creased. We chose the value of A as the value of X' ¢’
takes the local maximum.

In the resultant spectra in Fig. 2(b), the frequency
transition from'the systole period, which lies between
the first heart sound (I) and the second heart sound
(II), to the diastole period is clearly obtained.

4. CONCLUDING REMARKS

We present a new method to estimate spectrum tran-
sition of a nonstationary signal in low SNR cases using

T T T

dysfunction. T

0
-0.1
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1

Fig. 1 (a) an electrocardiogram, (b) heart sounds, and
(c) small vibration signal y(n) with high frequency /
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components on the interventricular septum of the heart
measured by the newly developed method in our lab.[11].



a linear algorithm without any basic function. By ap-
plying the proposed method to the heart wall vibra-
tions, we found there are clear spectrum transition pat-
terns.

The electrocardiogram or the heart sounds contain
only low frequency components and each of them does
not continue within one beat period. However, small
vibration signals accurately measured by our method
contain the information enough to diagnose all four
stages in one cardiac cycle. Thus, a new scientific field
of noninvasive acoustic diagnosis of the heart dysfunc-
tion will be developed soon by the measurement of the
heart wall vibrations and their analysis as proposed in
this paper. [~ ~ ~ =~ T 7 :
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Fig. 2. (a) The spectra of signals z(n;j) obtained
by the DFT with the Hamming window of 30 point in
length. The even and odd frames are shown in solid
lines and dotted lines, respectively. (b) The spectrum
transition estimated by the proposed method in this
paper for the same normal person. Each estimated
pole frequency is indicated by “o”.
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