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ABSTRACT

The ordinary Fourier transform is suited best for analysis
and processing of time-invariant signals and systems. When
we are dealing with time-varying signals and systems, filter-
ing in fractional Fourier domains might allow us to estimate
signals with smaller minimum-mean-square error (MSE).
We derive the optimal fractional Fourier domain filter that
minimizes the MSE for given non-stationary signal and noise
statistics, and time-varying distortion kernel. We present
an example for which the MSE is reduced by a factor of
50 as a result of filtering in the fractional Fourier domain,
as compared to filtering in the conventional Fourier or time
domains. We also discuss how the fractional Fourier trans-
formation can be computed in O(N log N) time, so that the
improvement in performance is achieved with little or no
increase in computational complexity.

1. INTRODUCTION

The fractional Fourier transform was defined mathemati-
cally by Namias [2], and McBride and Kerr [3]. Its analog
optical implementation was discussed in [4, 5] and recently
a fast digital O(N log N) time algorithm has also been de-
veloped. (The outline of this algorithm will be given in
the appendix.}) Other work in this area includes [1] and [§]
in which many properties are derived and applications are
suggested.

Several applications of the fractional Fourier transform
have been suggested or explored to varying degrees. These
include optical diffraction and beam propagation, optical
signal processing, quantum optics, phase retrieval, signal
detection, pattern recognition, noise representation, time-
variant filtering and multiplexing, data compression, study
of space/time-frequency distributions [1, 2, 3, 4, 5, 7, B, 9].

The ath order fractional Fourier transform of a function,
denoted by F°[f](z), is defined as [1, 3]:

(F M=) = / Ba(z,7')f(z") ds’,
Ba(z, zl) - A¢ei1r(1-2 cot ¢p—2xz’ csc p+2'2 cot ¢)’ (1)

where Ay = (|sin ¢|) "'/ exp (,'("_SE_ILiﬂﬁl - %)), and ¢ =

a7 /2. The kernel Ba(z,z') approaches §(z —z') or §(z +z')
when a approaches 0 or +2, respectively. The definition is
easily extended outside the interval [~2,2] since F* is the
identity operation {3].

Some essential properties of the fractional Fourier trans-
form are: i) It is linear. ii) The first order transform (a = 1)

corresponds to the common Fourier transform. iii) It is ad-
ditive in index, Fo1F®f = Fitoay

An important property of the fractional Fourier trans-
form is its relation to the Wigner distribution. Let W (z, v)
denote the Wigner distribution of the signal f. It is well
known that the projection of W(z,v) onto the z axis gives
the magnitude squared of the frequency-domain represen-
tation, and the projection onto the v axis gives the magni-
tude squared of the time-domain representation of the sig-
nal. The property in question states that the projection
onto an axis making angle ¢ with the x-axis gives the mag-
nitude squared of the a = ?th order fractional Fourier
transform of the function. This property can be formulated
as iv) Rg[Ws(z,v)] = |F[f]|?, where the operator R is
the Radon transform evaluated at the angle ¢. Other prop-
erties may be found in [1, 2, 3, 4, 5].

The ordinary Fourier transform is suited best for anal-
ysis and processing of time-invariant signals. When we are
dealing with time-varying signals and systems, filtering in
fractional Fourier domains might allow us to estimate sig-
nals with smaller minimum-mean-square error. In a simi-
lar spirit, multiplexing in fractional Fourier domains allows
signals whose time-frequency distribution is irregular to be
packed more efficiently in a given channel [1]. In this work
we concentrate on filtering in fractional domains.

SIGNAL

Figure 1: Noise separation in a=0.5th domain

There are a variety of time-varying digital signal pro-
cessing algorithms based on mixed time-frequency signal
representations. (see for example [10] and the references
given there.) Many signal processing operations have been
implemented by modifying these representations in some
time-varying manner. However the majority of these suffer
from especially two problems: i.) Most of the representa-
tions, such as the Wigner distribution, are not linear so that
there exists interference terms for multicomponent signals
ii.) The modified time-frequency representation may not be
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the time-frequency representation of any signal, so that ad
hoc approximations must be introduced.

Recently we have discussed how various space-variant
operations can be performed by multiplying with a filter
function in a fractional Fourier domain [1]. Signals with
significant overlap in both the time and frequency domains
may have little or no overlap in a fractional Fourier do-
main. To understand the basic idea in the simplest possible
terms, consider the simple example shown in figure 1, where
the Wigner distributions of a desired signal and undesired
distortion term are shown. By virtue of property iv), we
observe that they overlap in both the a=0th and a=1st do-
mains (consider the projections on the £ and v axes), but
they do not overlap in the a = 0.5th domain. Thus we can
eliminate undesired signal components by using a simple
unit amplitude mask in the ¢ = 0.5th domain.

2. PROBLEM STATEMENT AND SOLUTION

We consider a commonly used signal observation model,
y=H(z)+n, (2)

where H(-) is a linear system that degrades the input (de-
sired) signal z, and n is an additive noise term. Our aim
is to filter the observed signal y to minimize the effects of
degradation and noise. Our criteria for judging the effec-
tiveness of the restoration is the mean square error (MSE).
We will assume that as a prior knowledge we know the cor-
relation functions R:z(t,t') = E[z(t)z(t")], Ran(t,t) =
E[n(t)n(t')] of the input process and noise. We will fur-
ther assume that the noise is independent of the input and
it is zero mean for all time, ie. E[r(t)] = 0 V ¢. Under
these assumptions we can also compute the cross correla-
tion function R,y(¢,t') = E[z(t) y(t')] of the input process

z and the output process y, and the correlation function:

Ryy(t,t') = E[y(t) y(t')] of the output process by virtue
of equation 2. Now, consider a linear estimate of the form
# = G (y). The corresponding MSE is

Ellz -],

o =
where ||-||?> denotes the L, norm of the signal. For the above
definition of the MSE to be meaningful, we require the input
processes and noise to be square-integrable. This in turn ne-
cessitates the input processes and noise to be non-stationary.
For stationary processes the MSE is simply defined as the
expected value of the absolute value of the difference term.

For the time-invariant degradation model H with sta-
tionary processes z and n, the linear operator Gop¢ that
minimizes the MSE corresponds to the optimal Wiener fil-
ter. In this case, the required operation turns out to be
of the convolution type, so that one can effectively imple-
ment it with a filter in the conventional Fourier domain. For
an arbitrary degradation model or for non-stationary pro-
cesses, finding the general linear filter that minimizes the
MSE is difficult. More importantly, in general the resulting
linear filter will be time-variant (not expressible as a convo-
lution), so that it cannot be implemented in Nlog N time
using FFT based techniques.

We consider filters in the fractional Fourier domain, that
is, the estimated signal is related to the observation as,

(1) F (g - F ) ()
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/ B_a(t,1) g(t)

This filter corresponds to multiplication with a function g{:)
in the ath domain. If @ = 1, this corresponds to Fourier do-
main filtering as in the case of Wiener filtering. With this
form of estimation filter, the minimization problem consid-
ered in this paper can be formally written as:

/ Bu(t’, t”)y(t”) dt" dtl

(3).

The class of fractional Fourier domain filters is still a
subclass of the class of all Linear filters, so the linear filter
we find will not be optimal among all linear filters. How-
ever, it is a much broader class than time-invariant Fourier
domain filters, and in some cases it is possible to reduce the
MSE for time-varying degradation models or non station-
ary processes, as compared to filtering in the conventional
Fourier domain. The resulting filter can be implemented ef-
ficiently since efficient optical and digital implementations
of the fractional Fourier transform are known.

We will attempt to solve the minimization problem de-
fined by equation (3) using calculus of variations method.
We define the cost function J = o%. J varies with the choice
of g(-) since &(t) varies. This functional J is to be minimized
with respect to g(-). We substitute g(-) = go(-) + @ §g0(-)
where & = are + 1 @im is a complex scalar parameter, go(-)
is the optimum filter and 8g,(-) is an arbitrary perturbation
term and we fix go(-) and 8go(-). With this substitution
£(t) and also J vary with « for each fixed §g.(-),

gopt (1) = argmin crz
g

i(t,a) = / ” B_a(t,1') (go(t') + (ere + ictim) 8g0(t'))
x / ” Bo(t',t")y(t")dt" dt’
J@ = E [/_ (z(2) — £(2, @) (z(t) - £(t, @))* dt]

The necessary conditions for the optimum value of J are
[11]:
8 J(a) aJ(a) @
d Qe da im
It can be shown that after some algebraic manipulations,
the necessary conditions for optimality of J imply,
o0

E [ /_ } 8go(t') ( /_ : (z(t) — £(t,0))"

B_.(t,t) / - Ba(t',t")y(¢") at” dt) dt'] =0
(%)

Since 6g,(t') is an arbitrary term and equation (5) is true for
all 6go(¢'), the inner integral should be equal to zero. Using
this condition one can find the optimal filter function:

L [ Ba(t, ') B_a(t', t") Ray(t, ") dt” dt
T 7, Bt ) Balv. ) Ry 27 a7 2
(6)

where the correlation functions are defined as R:y(t,t") =
Elo(t)y”(£")] and Ryy(1,t") = E [y(2)y" ()]

|a=0= 0, |a=0= 0.

go(t') =



In the above formulation, it was assumed that the value
of a is given. To find the optimal choice of a, we can substi-
tute the optimum filter function (cf. (6)) into the definition
of MSE and apply a minimization algorithm with respect to
a. In practice, it might be easier to find the optimum value
of a by computing the MSE as a function of a, and choosing
that value of a which results in the smallest MSE.

Discrete time formulation. We now present the dis-
crete time formulation, beginning directly from the discrete
version of Eq. 2. In this case H is a matrix and z, n, and
y are vectors. They will be denoted by underlined bold-
face letters from now on. The discrete fractional Fourier
transform takes on the form of a matrix multiplication (see
appendix), just as the ordinary discrete Fourier transform.
The error for the discrete case is given by: ;

o2 = + B[~ (x-1)] )

where N is the size of the input vector x and X = g"aé ga Y.

Here ég is a diagonal matrix whose diagonal consists of el-

ements of the vector g , and F2 is the fractional Fourier
transformation rgatrix. The inverse transformation matrix
is F7@ = (_F__a) , since the fractional Fourier transforma-

tion is unitary. Here (-) denotes conjugate transpose.

This estimate corresponds to a multiplicative filter in
the ath fractional Fourier domain. As in the continuous
time case, if ¢ = 1, F2 is simply the DFT matrix and we
obtain the common Fourier domain filter.

In order to find the optimal filter that minimizes the
MSE, we define the cost function J4 = o2 and note that
it varies with the choice of the vector g = [g1 g2 ... gn].
Since in general the filter vector g can be complex, we can
write its components as g; = gi,re + 1 giim. The optimum
value of the cost function Jq is obtained from the conditions,

dJa
8
Ba7e (8)

8J4 =u 1=1...,N

=0,

g;j,im
It can be shown that the elements of the optimum filter
function are given by,

f'aH

7
i.?

5

g

gopt,j = j=1...,N (9)

| |

d

Yy

where Exy = F [_)gXH] ’éyy =F &XH] are the corre-

lation matrices and f‘:"H is the jth row of the matrix ga'

This last equation provides the solution of our minimiza-
tion problem in the discrete time setting. We note that this
result is fully analogous to the solution obtained in equation
(6) for the continuous time case.

3. EXAMPLE

Irn this section, computer simulations that illustrate the ap-
plications and performance of our filtering scheme will be
given. We consider a degradation model that corresponds
to a time-varying low-pass filter whose bandwidth increases
linearly in time. The input process is a Gaussian function
which deterministic except for a random amplitude. The
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noise process is finite duration bandpass noise which is mod-
ulated with an exponential quadratic chirp function (e_‘"'z)
so that its center frequency increases linearly with time. In
Fig. 2 (a), we have shown the normalized MSE plot for dif-
ferent values of a. From the plot we find that the minimum
MSE is achieved for a = 0.5. We have plotted the real part
of the optimum filter function for ¢ = 0.5 in Fig. 2 (b) and
the imaginary part in (c). We note that the imaginary part
can be set to zero without effecting the final results. Fig.
3 (a) and (b) shows realizations of the input and output’
processes (only real part is plotted) respectively. Resulting
estimates for these realizations are plotted in Fig. 3 (c). The
MSE is 0.001 for a = 0.5 while it is 0.063 for ¢ = 1.
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Figure 2: (a) MSE vs a, (b) Real part of optimal filter in
a=0.5th domain (c) Imaginary part
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Figure 3: (a) Realization of input process z, (b) Realization
of process y (c) Comparison of the estimate % in the 0.5th
domain (dashed), the estimate  in the 1st domain (dotted)
and the z (solid)

4. CONCLUSION

Filtering in fractional Fourier domains may enable signif-
icant reduction of the MSE compared to ordinary Fourier
domain filtering. This reduction comes at essentially no ad-
ditional cost, since the fractional Fourier transform has an



O(N log N) algorithm. We have presented a mathematical
formulation and solution of this problem analogous to the
formulation and solution of the the optimal Wiener filtering
problem.

Filtering in fractional domains will work better for cer-
tain kinds of distortions and signal and noise statistics in
comparison to others. The presence of time-varying distor-
tion and non-stationary statistics suggest that the fractional
transform may be of use, but do not guarantee significant
improvements in every case.

The method can be greatly improved by filtering in
not one, but several consecutive fractional Fourier domains.
This not only allows one to handle a much wider variety of
signals, but may also create the potential to approximate
the most general optimal linear filter

5. APPENDIX

In this appendix, we present a fast algorithm for the im-
plementation of the fractional Fourier transformation. The
definition of the fractional Fourier transformation can be
cast in the form,

(FUD @) = Ase™e [~ amimte’ [gme )] 4
- (10)

where o = cot ¢ and 8 = csc$. The last term inside the
integral corresponds to a chirp modulation of the signal f(-).
This modulation results in a vertical shear in the Wigner
domain since the Wigner distribution of a chirp signal is a
line delta [6].

It will be assumed that the Wigner distribution of f(-)
is negligibly small outside a circle of diameter Az centered
around the origin. (Az must be chosen large enough to
satisfy this assumption. Normalizing the axes so that the
spread of the Wigner distribution is approximately identi-
cal along both axes will allow smaller choices of Az, which
will reduce computational complexity. These are essentially
the same considerations that go onto approximating a con-
tinuous Fourier transform with the DFT.) Under this as-
sumption, and by limiting ¢ to the interval £ < ¢ < I,
the amount of vertical shear in the ngner doma.m result-
ing from chirp modulation is bounded by 4%. This ensures

that the modulated function /™% f(x ) is bandlimited to
Az in the frequency domain. This allows f(-) to be repre-
sented by Shannon’s interpolation formula as follows:

N
iraz’? no__ ira( :) : ' n
e (@) = Y oD f( 2 )sine (202 (s~ 5 2-))
n=-—N
(11)
where N is the largest integer smaller than (Az)Z. The

summation ranges from —N to N since f(z') is assumed
to be negligible outside that interval. By using Eq. 11 and
Eq. 10 and changing the order of integration and summation
we obtain:

N
(}'-'“[f]) (:E) — 2‘2;‘;2: eira:nze—dwﬁ:;ﬂ;e;na( TA-)?
n=—N
n Bz
X f(K)rec (2A ) (12)
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e—i2mhzz’ sinc(2Az(z'— 52~ 5az))dz’ =

“—rect(2Z) ; Then the samples of the trans-

formed function are obtained by'
!am ~28mntan? '
(2axzx)

o0
where we ma.de use of f
e-i’21rﬂ.1: TAZ 5

(FUD (2 o) 3 Az

n=-~N

f(L)rect(ﬂ—;) (13)

Direct computation of the above matrix-vector product would -
require O(/N?) multiplications. An O(N log N) algorithm
for the computation of this form can be readily obtained.
For this purpose, we put Eq. 13 into the following form after
some algebraic mantpulations:

a1y (M As inta—p)(525)? Bm
(F [f])(2A Az rect(4N)
N
inf(FE2)? in(a—B) 585)?
X ,,;N e e fl— 2Az

It can be recognized that the summation corresponds to a
convolution of e'™533)” with the chirp modulated function
f(:). The standard FFT can be used to compute this con-
volution in O(/Vlog N) time. The output samples are then
obtained by another chirp modulation. Hence the overall

time complexity is O(N log N). The factor rect( =) only
limits the length of the output signal.
Thls algorithm is valid only for $<¢é<L Fand —-F <

$ < -2 (05<a<1and -1 <a< —05) However
using a basxc property of the fractional Fourier transform
we can extend this range to all values of a. For example:
Fe = Fooltl = Fe-lrl < g < 0.5 ete.

The above presented method is not the only one which
results in O(N log N) computation. However, it has many
desirable features compared to other methods of decompos-
ing the chirp integral and leads to good numerical behavior.
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