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ABSTRACT

We present the general formulation for the adaptive
equalization by distribution learning introduced in [A-
dali 94]. In this framework, adaptive equalization can
be viewed as a parametrized conditional distribution
estimation problem where the parameter estimation is
achieved by learning on a multilayer perceptron (MLP).
Depending on the definition of the conditioning event
set either supervised or unsupervised (blind) algorithms
in either recurrent or feedforward networks result. We
derive the least relative entropy (LRE) algorithm for
binary data communications and analyze its statistical
and dynamical properties. Particularly, we show that
LRE learning is consistent and asymptotically normal
by working in the partial likelihood estimation frame-
work, and that the algorithm can always recover from
convergence at the wrong extreme as opposed to the
MSE based MLP’s by working within an extension of
the well-formed cost functions framework of Wittner
and Denker [Wittner 88]. We present simulation ex-
amples to demonstrate this fact.

1. INTRODUCTION

As the volume of data traffic gets ever more demand-
ing on communication systems, the need for sophisti-
cated signal processing techniques to increase achiev-
able data communication rates becomes more evident.
Adaptive equalization techniques developed during the
last two decades have been successfully implemented
in high speed data transmission for correcting the dis-
torting effect of channels having substantial amplitude
and delay distortion. These techniques, based on linear
models, have inherent limitations in combating nonlin-
ear time varying distortion which is the major factor
hindering further increase in the attainable data rate
today.

Recently, a number of adaptive equalizers that use
nonlinear structures are introduced (see e.g. [Gibson
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91, Kechriotis 94}), and it is shown that these neu-
ral network based equalizers can successfully equalize
nonlinear channels where linear equalizers might fail.
These adaptive equalizers view channel equalization as
a classification problem and are based on the tradi-
tional mean square error (MSE) performance criterion.
We have recently introduced a new approach to the
problem of adaptive channel equalization [Adal 94] in
which conditional probability distribution of the trans-
mitted signal given the received signal is modeled by
a sigmoidal perceptron. In this framework, channel
equalization can be viewed as a distribution learning
problem on an artificial neural network. This new ap-
proach results in a perceptron based algorithm, which
can successfully combat nonlinear channel distortions
[Adal 94]. In this paper, we extend our formulation
to finite symbol alphabets, and present general formu-
lation for this framework which encompasses both su-
pervised and unsupervised (blind) mode of operation
for either feedforward or recurrent networks, and an-
alyze the statistical and dynamical properties of the
LRE algorithm which we derive within this framework.
The paper is structured as follows: in section 2, we
give the general problem formulation, derive the LRE
algorithm for binary data communications in section
3, present its analysis in section 4, and give a simula-
tion example comparing its performance with the MSE
based equalizer in section 5.

2. CHANNEL EQUALIZATION BY
DISTRIBUTION LEARNING

We formulate adaptive equalization problem as follows:
A sequence of symbols z(n), taking values from a finite
alphabet S = {ag, a1,...,ap } is transmitted through a
channel h which acts as a nonlinear operator on the in-
coming signal. Usually, the channel is assumed to have
finite memory (h : R — R). The output of the chan-
nel is corrupted by additive noise v(n), hence the input
to the equalizer can be written as y(n) = h(xg(n)) +
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v(n) where xg(n) = [¢(n),z(n - 1),...,z(n — K + 1)].
Let F,, be the o-field generated by events of the
form x(n) = [z(n),---,z(1),2(0)] and z(n) = [2(n),
-+,2(1),2(0)}; the vector of time dependent covari-
ates of z(n). Typically the covariates 2(n) are the
noise corrupted channel outputs y(n), however, they
can also be defined as functions of y(n) and z(n) de-
pending on the channel model or the application. If F,,
is defined as being created by the covariates which are
functions of the channel output y(n) only (and possibly
some other auxiliary information other than the trans-
mitted data sequence z(n)) this results in unsuper-
vised (blind) mode of operation for the equalizer. Since
Fn = d{1,x(n),z(n)} represents all that is known to
the observer at the equalizer end at time n, F,_; C F,..
Our aim is then to estimate the conditional proba-
bilities:
P(X = z(n)|Fn)
where the the conditional probability mass function
(pmf) p(z|F,) corresponding to the distribution P can
be written as:

p(z|Fn)=P(X =2z|F,) Vze€S.

We parametrize the conditional probabilities by a
multilayer perceptron pg and achieve learning by ad-
justing the parameter vector § based on the informa-
tion represented by F,,. Note that since F, includes the
entire history, pg(z|F,) can have a recurrent structure
as well. In [White 93], it is shown that a probabil-
ity density can be associated with the output of any
network indexed by weights § when we select a contin-
uous, nonconstant, and bounded hidden layer activa-
tion function, and a nonnegative, continuous, increas-
ing output activation function. The normalization con-
dition required by the probabilities can be achieved by
imposing constraints on the output bias weight.

The relative entropy (RE), or the Kullback-Leibler
(KL) distance [Kullback 51], a fundamental informa-
tion theoretic measure of how accurate the estimated
conditional pmf is an approximation to the true condi-
tional pmf

p(z|Fn)
po(z|Fn)

arises as the natural cost function for this formulation.
Note that it is nonnegative, and is equal to zero only
when p = pg. Within this framework, the goal is then
to learn the parameters § which minimize the accumu-
lated KL information (total RE)

Da(pllpe) = Y_ p(2]Fn)ln =2

z€S

(1)

Diotat. (pllpe) = _ Di(pllps)

i=0

(2)
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in the sequence of conditional observations z{0)|F,,
z(1)|F1, - -+ ,z(n)|Fn on a multilayer perceptron.

3. MULTILAYER LRE ALGORITHM

In what follows, we assume that z(n) is an independent
sequence taking values from the binary alphabet {0,1},
and derive supervised version of the LRE algorithm for
a single hidden layer feedforward perceptron probabil-
ity model. In [Adal 95], we consider an arbitrary finite
alphabet S and show that under rather mild regular-
ity conditions, the accumulated relative entropy error
minimization problem is equivalent to maximum par-
tial likelihood estimation. We then derive the super-
vised and unsupervised versions of the LRE algorithm
and the large sample properties of the partial likelihood
estimator.

The accumulated RE distance for binary data can
be written as

Dtotal.. (p”po) g(p(llft) 1 p((llli?;-)) +
1-p(1|F:)
(1= p(FN) I - F . @)

Since the true conditionals are not available we use first
order stochastic approximations:

p(1|Fn) = E{z(n)|Fa} = z(n)

to write the stochastic relative entropy (SRE) cost
function as:

Ditotat, (Bllpe) = = Y _[z(i) In pe(1]F:)

i=0

+(1 - 2(3)) In (1 - po(1|F3))]

after some simplifications [Adal 94].

For the binary case, the pmf can be represented by a
single output multilayer perceptron. Assume the single
hidden layer feedforward structure:

(4)

po(11Fa) = f <vo(n) +y g<vﬁ+1(n>w,~(n)>v.-<n)>
= (5)

which is a leading example of the networks under con-
sideration for the conditional probability model where
Fa = o{l,z(n),y~n(n)}. In (5), ¥y41(n) is the aug-
mented input vector containing the last NV samples of
y(n) (vector yn(n)) together with the bias input 1,
wi(n) is the N + 1 dimensional weight vector from the
input layer to hidden node i, ({ = 1,---,¢ where ¢
is the number of hidden nodes) and v;(n)’s are the
hidden to output layer weights vo(n) being the bias



weight. We represent the entire vector of weights by
8, and choose the hidden node activation function g to
ensure network approximation capabilities [White 93].
It can be chosen as any of the familiar logistic, hyper-
bolic tangent, or the radial basis activation functions.
Assume choosing both as the sigmoidal or hyperbolic
tangent followed by Z[(-)+1] transformation (to ensure
f(-) € [0,1]) functions. Gradient descent minimization
of the SRE given in (4) by using the probability model
of (5) then results in the least relative entropy (LRE)
algorithm with the parameter updates:

vi(n+1) = vi(n) + prsi(n)e(n) (6)

wi(n+1) = wi(n)+u2¥ w41 (n) f (8i(n))vi(n)e(n) (7)

i =0,-,q where s;(n) = f(Fu41(n)Wi(n)) and e(n)
= z(n) — pe(1|Fn). Note that we can also use variants
such as momentum and batching.

4. PROPERTIES OF LRE

4.1. Statistics:

To study large sample properties of learning with the
SRE cost function, we cast the problem as a maximum
partial likelihood estimation problem. Partial likeli-
hood (PL) is a generalization of both likelihood and
conditional likelihood and is introduced in [Cox 75]. We
show that learning on the SRE cost function is consis-
tent and asymptotically normal by working in the PL
estimation framework.

The cost function D(p||ps) may also be viewed as
the negative of the partial log-likelihood relative to pa-
rameters § as follows: Since z(n) is binary, the pmf can
be written as

Po(1Fa)* ™ (1 = po(1|Fa)) . (8)

Then the corresponding partial likelihood is given by
the product

PL(O) = [ o(UF)™ P (1 - po(UIF) 0. (9)

i=1

Now, it is easy to see that D(p|lps) = —In(PL(8)).
Thus, the maximization of the PL function is equal
to minimization of the SRE cost function, i.e., 8y =
argmax PL(#) = argmin D(p||ps).

We assume that a single layer sigmoidal perceptron
is used as the probability distribution function model,
ie. po(1}Fn) = 1/(1 + exp(—0T(n)yn(n)). Define the
score vector process

Se(n) = Z yn (i) (z(i) — po(z|F:))
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as the gradient (V = (8/000,0/861,---, 8/90x)T) of
PL{0) which is a martingale with respect to the filtra-
tion Fo C F1 C F2 C -+-. The sample observation
matrix is defined as Is(n) = VV'(-logPL(f)) and can
be written as the sum of conditional covariance matri-
ces

Iy(n) = Z varg{y~(i)(z(i) — yn (i) F:}.

i=1

Since Sy(n) is a martingale, Iy, (n) is the cumulative
conditional variance matrix for Sg{n) at § = 8. By fol-
lowing the general development of [Slud 92], the large
sample properties of the SRE minimization or the max-
imum PL estimation are then studied by using S,(9)
and I(9) based on the martingale central limit theo-
rem for S,(#)/+/n and the almost sure concavity of the
sample information matrix Ig(n)//n.

Hence, the estimator § is almost surely unique for
all sufficiently large n and as n — oo,
(i) @ — 6o in probability,
(i) v/n(f - 85) — N[0, A=1(8,)] in distribution,
where A(6p) is the information matrix per observation
for estimating the true parameter §9. Thus, learning by
minimizing the stochastic relative entropy is consistent
and asymptotically normal. Note that, in this proof,
we have not made the common but unrealistic assump-
tion of independent observation vectors since PL es-
timation bypasses the problem of data dependency in
the maximum likelihood estimation by permitting se-
quential conditional inference. In [Adal1 95], the large
sample properties are derived for the general probabil-
ity model.

4.2. Dynamics:

In [Adal 94], we have shown that SRE cost function is
well-formed in the sense of Wittner and Denker [Wit-
tner 88], and hence gradient descent on this cost func-
tion is guaranteed to find a solution. As is well known,
there is no such guarantee with the mean square error
(MSE) cost function when used on neural networks,
even on those without any hidden units. We can also
study the dynamics of gradient descent learning on the
SRE cost function by considering its parameter up-
dates. The parameter updates of the LRE algorithm
for gradient descent learning for the single hidden layer
feedforward model of (5) are given in (6) and (7). If
we compare these updates by those of the commonly
used form of backpropagation algorithm based on MSE
minimization (e.g. [Haykin 94]), it is easy to see that
the main difference between the two minimization ap-
proaches is the absence of the term proportional to



output activation function gradient F’(s) in the up-
dates. This term directly affects the response of the
algorithms in tracking changes in the unknown (true)
system parameters. Assume that after initial conver-
gence, output {or output of one unit in the multi-output
case) saturates at the wrong extreme, then since SRE
is a well-formed cost function, for LRE, there always
exists an € > 0 for which F’(s) > ¢, [Adah 94]. By con-
sidering the LRE updates given in (6) and (7), it is easy
to see that when the backpropagated output error will
be a non-vanishing control signal even for misclassified
inputs, and the parameters will easily recover from con-
vergence at the wrong extreme. This fact can also be
observed by considering the two cost functions: in the
MSE cost function

Eiotal, = Z (2(d) - io(i))z

i=0

the total error would float around on a relatively flat
plateau when the network output &4(n) saturates at
the wrong extreme whereas the RE cost function (2)
diverges.

5. SIMULATION RESULTS

We demonstrate the situation discussed in section 4.2
with a simulation example. Consider a binary pulse
amplitude modulation (PAM) data transmission sys-
tem. An abrupt change in the channel response hap-
pens during training of the equalizer and causes mis-
classifications after initial convergence. We model the
nonlinear channel as a multipath channel (H(z) =1+
0.5z% + 0.252716) followed by a nonlinearity 0.5(.)%,
and the PAM communication system has 8 bits per
sample with Nyquist pulse shaping.

We implement the LRE algorithm given in (6,7) and
the gradient descent minimization of the MSE on the
same MLP structure for equalization of the given chan-
nel. Both algorithms have a 3-8-1 perceptron structure.
In Figure 1, we show the bit error rate (BER) curves
for the equalization of this channel which show that
both algorithms do an equally good job of partition-
ing the decision region. What is remarkable is how-
ever, when we introduce an abrupt change (an exact
sign change) in the channel characteristics after con-
vergence, causing the decision region to rotate suddenly
the LRE can very rapidly adapt to this new operating
condition. Starting from the very first iteration after
the change it can follow the changes by adapting both
its hidden and output layer weights in a few iterations.
As we can observe in Figure 2, MSE produces many
wrong decisions before it can adapt to this new oper-
ating condition.
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Figure 1: BER Comparison for MSE and LRE multi-

layer perceptrons
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Figure 2: BER Comparison for MSE and LRE multi-
layer perceptrons (with an abrupt change in the chan-
nel response)
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