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ABSTRACT

The Continuous-time Angular Fourier Transformation
(AFT) represents a rotation in Continuous time—frequency
space and also serves as an orthonormal signal representa-
tion for chirp signals. In this paper we present a discrete
version of the AFT (DRFT) that represents a rotation in
Discrete time—frequency space and some properties of the
transform that support its interpretation as a rotation. The
transform is a generalization of the DFT. The Eigenvalue
structure of the DFT is then exploited to develop an effi-
cient algorithm for the computation of this transform.

1. INTRODUCTION

The Continuous-time Fourier Transformation (CTFT) is
defined by the following pair

X(w) = \/%/w 2(t) exp (—jwt)dt
s(t) = \/—12_; /_:X(w)exp(jwt)dw (1)

The CTFT is a widely used time-frequency analysis tool
and transforms a point z(t) in L*(R) to a point X(w) in
L?*(R). The CTFT, in effect treats the time and frequency
axes as orthogonal axes. Recently signal representations
(AFT) that represent a rotation on (t,w) space and use
“angularly coupled axes” have been developed [1, 2]. The
AFT of a signal z(?) is then defined as

o0
2, 2
Xa(w) = Ko / z(t) exp (j(t -;w cota — tw csc ar))dt
-0
(2)
where K, = —'-2;&3

In this paper we present a discrete version of the AFT
which is an angular generalization of the DFT. If the DFT
operator W is defined as an N x N matrix with entries

Wk = —

vN

then the DFT becomes a unitary operator with a set of N
eigenvectors and four distinct eigenvalues [1,—1, j, — 71 (3]

exp (—jzj—:;-nk) (3)
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The discrete version of the AFT is obtained by an angular
generalization of these eigenvalues to a continuous angular
parameter by using fractional powers of those eigenvalues.
The unitary nature of the resultant operator is exploited in
later sections of the paper to develop an algorithm for the
computation of this transform.

2. INTERPRETATION AS A ROTATION

Successive application of the Fourier transformation F on
z(t) yields

Fl@)]=2(-1) , Fla(t)]=X(-w) , F'lz(t)]=z(1)

(4)
In a similar fashion, the DFT operator defined in (3) when
applied to z{n], yields

W2lz] = o[((—n))n], W[z] = X[((—K))~], W[z] = I([;)]
These equations lead us to interpret the CTFT as a 90°
rotation operator in the (¢,w) plane and the DFT as a 90°
rotation operator in (n, k) space. Application of the oper-
ator twice is a reflection or a 180° rotation; thrice is a re-
flection of the transform or a 270° rotation; and four times
corresponds to the identity operation or a 360° rotation [1].

3. DISCRETE VERSION OF THE AFT

Direct discretization of the AFT defined in (2) by replac-
ing ¢t with n and w by k does not produce a discrete rota-
tion operator because a discrete (n, k) grid does not permit
transformations with non-integer entries instead , we define
the Disrete Rotational Fourier Transform (DRFT) as

Aa(z) = W= (2) (6)

When the operator is evaluated for parameter values o =
0,27 one obtains

Ar =W'=1=W°’= A, (7)

When evaluated for a parameter value of a = %, one ob-
tains the DFT operator.

A =Wi=w (8)
2

Upon evaluation for @ = 7 one obtains the cyclic flip matrix

A, =W? (9)
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These relations provide us with motivation to interpret the
operator A, as a rotation through “a” in (n,k) plane. A
Taylor series expansion of the matrix operator A, followed
by application of the Cayley-Hamilton theorem, which states
that every matrix satisfies its characteristic equation sug-
gests that we could write

Ao =ao(a@)l + a1 ()W + a2 () W? + a3 (o) W2, (10)

where the coefficients a;(a) are obtained on regrouping of
terms containing I, W, W? and W? from the Taylor series
expansion. This equation gives .an interesting interpreta-
tion of subspace mixing, where the coefficients ao(a), a1 (a),
az(a) and a3(a) generate an angular mixture of the basis
matrices I, W, W? and W3 [5].

4. PROPERTIES OF THE OPERATOR

Most of the properties of the DRFT are inherited from the
DFT and the fact that A, commutes with W
1) Unitary: The operator is unitary, hence

AF=A7'=A_, (11)
As a consequence of this property one obtains
Ao =ag(a)I+ a3 ()W + a3 (a)W? 4+ af (@)W?  (12)

Since AqA_o = I, the corresponding relations between
the coefficients are

| Z (e = 1
'gis'f;e,(a)aj(—a)ﬂ((iﬂ—1)),] = 0
]—021:23 ai(a)a;(—a)§[((i+7—2))] = O
.‘]—02’;2,3""(“)ai(—a)5[((i+j—3))4] = 0 (13)

la) Another consequence of the unitary nature of the oper-
ator is the norm preserving property [Parseval’s relation).

A=)l = |i=|| (14)

2)Angle Additivity: Application of the operator with angu-
lar parameter “a” followed by an application of the operator
with angular parameter “4” is equivalent to the application
of the operator with angular parameter “a + 3”.

AcAps=Aqyp (15)

2a) Multiple applications of the operator to a signal is equiv-
alent to one rotation through a larger angle in the (n, k)
plane

Al = Ana (16)

The corresponding relations between the coefficients are

(ao(a) + ar(e@) + a2(@) + a3 ()" =
ao(na) + ai(na) + ax(na) + a3 (na)

3)DEFT «— 90° rotation: Application of DFT operator is
equivalent to a 90° rotation.

Az =WA, (17
The corresponding relation between the coefficients are
r.s
ai(a+ 5) = ai-1(a) (18)

where a_; = a3 .
4)Circular flip property: A circular flip transforms into a
circular flip in the rotated frequency domain.

AaW?(z[n]) = W2[Aaz[n]] (19)

5)Periodicity: The operator is periodic in the parameter o
with a fundamental period of 27

a = A-a+2r1r (20)

This implies that the coefficients a;() are periodic in the
parameter o with period 27. These above mentioned prop-
erties illustrate well the angular and rotational aspects of
the transform. -

5. COMPUTATION OF THE DRFT
The operator W defined in (3) is a unitary operator and

consequently has a set of N orthonormal eigenvectors #;
[4]. The operator W has an eigen-decomposition given by

W = Z/\.-z‘f.-ﬁ‘f'

L H L LH . _H o H
E 50 — E 0i7; +](E iU — E T Uy )

iEN, iEN, iEN3 iEN,
(21)

where N is the set of indices for eigenvectors belonging to
A =1, Nz for A = —1 and so on. A,, being a matrix func-
tion of W is also unitary and has an eigen-decomposition

defined by taking a fractional power of the eigenvalues (\;) =

Aa= )" exp(jaka)Tidl + > exp (j(4ka + 2)e)7F

1EN; €N,
+ Z exp (j(4ks + 1))@ 77 + Z exp (j(4ks — 1)):77
1EN; IEN,
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where k1, k2, k3 and k4 are integers. It should be noted that
because of the ambiguity present in the fractional power
operation, the operator A, defined by (6) is not unique.
The branch cut 4y =0, k2 =0, k3 = 0 and k¢ =0 is
imposed to make the operation unique. A specific ordering
on the eigenvalues of W, Ay =1, A2 = —1, A3 = j and
Ay = —j is also imposed to make the solution unique.

Computation of the transform directly for an angle o
requires that we perform an eigen decomposition on the
operator W and compute the new operator A,. This would
be an impractical thing to do for large orders. Instead, we
first generate the matrices I, W, W? and W? for a given
dimension N where W? is the circular flip matrix and W3
is a circularly flipped version of W. The transform and
its inverse A_, are then computed through the subspace
projection equations.

As = ao(@)I+a; (@)W + az(a)W? + a3(a)W?
A_a = af(a)I+ai(a)W +al(@)W? +af(a)W?

where the coefficients ao(a), a1(a), a2(a) and a3(a) in
the expansion are given by

ao(a) = %(1 +e’%)cos o
ai(a) = —;—(1 —j&’*)sin &
az(a) = %(e”’ —1)cosa
az(a) = %(—1 —je'*)sina (22)

6. THE DRFT AS AN ORTHONORMAL
SIGNAL EXAPANSION

The DRFT of a signal z[n] can also be written as

N-1
Xa[k] = Ka[n, klz[n] (23)
n=0
where the kernel of the transformation corresponding to the
operator A, is given by

a1 (a)
VN
a3(a)

VN

The signal is recovered through the IDRFT relation

Ka[n, k) = ao(a)b[n — k] +

exp (—j%\,’—r—nk)

+az(a)é[((n + K))N] +

exp (jgNlnk)

zfn] = Y K_aln, K] Xa[k] (24)

k=0

6.1. PROPERTIES OF THE KERNEL

Some significant properties of the kernel are given below
1) The kernel is symmetric in n, &

Ka[n, k] = Kalk, n] (25)

which signifies the fact that the roles of the time and fre-
quency variables are interchangable.

2) The Kernel is periodic in the parameter o analogous to
a rotation operation

Ka+2,r[n, k] = Ka [Tl., k] (26)

3) The Kernel corresponds to the basis function of an or-
thonormal representation

N-1
D Kaln, K)Ka[n, k'] = 8[k — K] (27)
n=0
4) The inverse operation of a rotation through an angle o
is a rotation through —«

K_a[n, k] = K3[n, k] (28)

5) A rotation through “a” followed by a rotation through
“B” is a rotation threugh “a + 8

N-1
> Kaln K1Ka[k', K] = Kaspln, k] (29)
k!=0
6) The kernel of the transformation is an angular mixture
of four basic kernels

Ka[n, k] = ao(a)Ko[n, k] + a1(a)Kz[n, k] +
az(a)Kx[n, k] + as(a)K%l[n, k]

7. EXAMPLE OF THE DRFT

Consider a signal mixture z[n] of a sinusoid and an impulse.

27

—n) + §(n — 100) (30)

z[n] = cos(
Figs. 2a,2b,2c and 2d are the magnitudes of the 210-pt
DRFT for the above mixture at angles 15°, 30°, 45° and
60° respectively.

¢ Over different angles the signal energy is squeezed
into different frequencies. )

o For angles between 0° and 90°, the impulses produced
by the sinusoid grow in amplitude and finally swamp
out the original impulse.

¢ The transform for other rotation angles can be ob-
tained from the transform values for angles between
0° and 90° using the symmetry present in the signal
of the example.

o In general, for a signal without symmetry in it the
DRFT expansion of (10) is a complete orthonormal
representation.
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8. CONCLUSION

The DRFT which is an angular generalization of the DFT
and represents a rotation in (n, k) space has been presented. o
The DRFT operator when evaluated for angular parameter
values of 0° and 360° becomes the identity operation, while
on evaluation for 90° yields the DFT operator. The DRFT
of a signal is equivalent to an angular mixture of the sig-
nal, its DFT, a circularly flipped version of the signal and
a circularly flipped version of its DFT. An efficient algo-
rithm that avoids eigenvalue decomposition has also been
presented.
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Figure 1: Magnitude of the DRFT of the example signal for
angles (a)a = 15°, (b)a = 30°, (c)a = 45° and (d)a = 60°.
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