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ABSTRACT

In this paper, two types of adaptive FREquency SHift
filters are proposed. One is LMS Adaptive FRESH
Filter. The other is Blind Adaptive FRESH Filter.
By exploiting the spectral correlation of cyclostation-
ary signals, these adaptive filters can separate the sig-
nals which overlap in both frequency and time domain.
Theoretical development and simulations of these fil-
ters are given in this paper. The results show that for
signals which spectrally overlap, the adaptive FRESH
filters can perform very well while ordinary adaptive
filters fail.

1. INTRODUCTION

In recent years, various filtering techniques to ex-
tract signals from interference have been proposed. How-
ever these conventional filters cannot separate signals
which overlap spectrally. In practical communication
systems, signals often overlap in the frequency domain.
In order to extract the desired signals from these inter-
ference, Gardner and his colleagues have proposed the
cyclic Wiener filter{1], which can separate spectrally
overlapped signals by using the cyclostationarity of sig-
nals. :
Consider a cyclic Wiener filter whose input z(t) and
output §(t) are related by:

i) = [ At we(u)dy (1)

where h(t, u) is the impulse response of the filter, which
can be expanded as:

M
ht,u) = 2 hon(t — w)ezp(j2ramu) (2)
m=1

with o being the cyclic frequency of signals and A, (t—
u) being a time-invariant filter. Using Equation(2), we
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can write the output of the filter as:

M
1) = Y hn(t) % [2(t)ezp(27tm (1))
m=1
where x represents convolution.
It was proven [1] that the Fourier transform H,,(f) of
the optimum transfer function h,(t) must satisfy the
following equation:

Sz(NH(f) = S3(f)

where: H(f) = (H1(f), Ha2(f).....Hm(f))T, and
S2:(f) is the spectral autocorrelation density matrix
of the input such that

S2.(f) =[S (f = (o + o)/ 2)]arxm

Sg%(f) is the Fourier transformation of R2%(m)
REX(m) = (a(n)a"(n — m)e~I3rasn)

where (.) denotes time average and * denotes conju-
gate.

Similarly, §7,(f) is the spectral cross-correlation den-
sity function vector between desired signals and input.

Sy=(f) = [S52(f — cr/2)|mx1
k=1,2,...M

However, in order to design the optimum filter H(f),
52(f) and S7,(f) must be known, which requires the
knowledge of 2(t) and y(t), t € (—o0, 00). In this paper,
we propose two kinds of adaptive FREquency SHift
(FRESH) filters. One is LMS Adaptive FRESH Filter
(LMSA-FRESH Filter). The other is Blind Adaptive
FRESH filter(BA-FRESH Filter). The input of filter
is modeled as

z(t) = y(t) +i(t) + v(t)

where y(t) is the desired signal, i(¢) is the interfer-
ence and v(t) is the stationary noise. We assume that
y(t) and i(t) overlap spectrally, but they have different
cyclic frequencies.
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Fig. 2.1 The LMS Adaptive FRESH Filter

2. THE LMS ADAPTIVE FRESH FILTER

The basic idea of the LMS Adaptive FRESH filter is
based on following property of cyclic signals.

Property I: The two spectral components of a cyclic
signal at f + o/2 and at f — a/2 are correlated. The
magnitude of correlation is measured by spectral cor-
relation coefficients.

When the two spectral components of a signal are cor-
related, we say that there exist spectrum redundancy
between the two components. For a cyclostationary
process, the correlation coefficient is defined as:

p= Sge(f)
(Sz(f + a/2)S.(f = a/2))I7

For any particular frequency f at which p = 1, we have
complete spectral redundancy of the two frequency com-
ponents at f+a/2 and at f—a/2. When the two spec-
tral components are linearly dependent, we can use one
of them to cancel or recover the other. In fact, as a re-
sult of this spectral redundancy, certain uncorrupted
spectral components in a signal can be used to cancel
or recover other corrupted spectral components in that
signal. This is the primary mechanism that enables us
to separate signals which overlap with each other in
spectrum. ’

If a training signal is known, using the Least Mean
Square criterion and the cyclostationarity of signals,
we propose the structure of the LMS Adaptive FRE-
quency SHift filter as shown in Fig 2.1. Furthermore,
if the time invariant filter of FRESH filter is an FIR
filter, the output of the ith filter is given by:

N-1
gi(n) = ) hi(k)zi(n — k) = hizi(n)  (3)
k=0
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where

hi(0) zi(n)
_ hi(1) 2i(n) = zi(n—1)
h"(N:- 1) :r;(n —-.N + 1)

and z;(n—k) = z(n—k)e/2*(r=%) £ =0,1,2 .. (N-
1) with z(n) being the input of the FRESH filter.
The total output is

M M ofo
() =Y %i(n) =) hlzi(n)=h z (n) (4

i=1 i=1

where

z (n) = [ (n)e] (n) - - - 2% (n)]T

(5)

;! t At t

h (n)= [B{(mAY(n)---Aly(m)]  (6)
By minimizing (y(n) — §(n))?, we can update h (n)

with the LMS algorithm, i.e.

h (n+1) =h (n) + 2ae(n) 3 (n)

=h (n) + pe(n) & ()

where u is step size and e(n) = y(n) — §(n).
In order to guarantee the convergence of the algorithm,
4 should satisfy following condition:

0<p<2/Adner 1<i< N

Amaz is the maximum eigenvalue of matrix (= (n) :%T
(n). .
()2 (n) =
Rz3~*(0) RgimoM(~-N +1)
Rz (1) Rzz7°™(-N +2)

Ry~ (N -1) Rzy—oM(0)
3. THE BLIND ADAPTIVE FREQUENCY
SHIFT FILTER

When there is no training signal available, we propose
an adaptive filter structure which is called the Blind
Adaptive FRESH filter as shown in Fig. 3.1. The ba-
sic idea of BA-FRESH filter uses the following property
of cyclic signals.

Property II: For a cyclic signal z(n), the frequency
shifted versions of z(n) are correlated at various cyclic
frequencies. The magnitude of correlation is measured
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by cyclic correlation function.

The signal components in the input data z(n) and its
frequency-shifted version are y(n) and y(n)e/2**" re-
spectively. At the cyclic frequency a, the desired sig-
nal and its frequency shifted versions are correlated but
other signal components are not. By maximizing this
correlation, we can extract the desired signal from the
corrupted input signal.

In Fig.3.1, the FRESH filter is the combination of the
frequency shift operation and time invariant filter bank
as shown in Fig.2.1. If the filter bank of the FRESH

filter in the upper branch is ;11 and that of the lower
t
branch is iozz, from Eqgs.(4) to (6), we have g(n) =;113:

1
(n) and #(n) =;12‘!°L (n). Since u(n) = z(n)e/2"*" with
a being the cycle frequency of desired signal, §(n) and
#(n) have strong correlation. For the interference sig-
nals, there is no correlation. Hence, we choose the cri-
terion as follow:

|Rgo]?
Fagkue

max J(hl,hg) = max
hlyhﬂ hx,hn

(M
where

5|2 PR 2 of o,

|Ry7|* = {§(n)F(n))|* = | By Rzu hof

, ot . o
|Rgy|* = 1(§(n)g(n))1* = | by Beo haf?

, ot . o
|Reel? = [{F(n)F(n))|* = | hy Ruu ha |?

- t
and Ry = (& (n) u (n))
Now Eq.(8) is equivalent to maximize the cost func-
[-] [
tion J with respect to the two vectors hy and h; i.e.,
o B o |

-] [

J(hlg h2) = I 1 zu 2 I 1]
of . o of . 0
h1 R::z' h1h2 Ruu h2

(8)
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Since the desired signal components in z(n) are cor-

related with that in u(n), we can imagine that §(n)

and #(n) provide the estimates of y(n) and y(n)e!2*o"
[

o
respectively. Therefore, selecting h; and ’.‘2 by max-
imizing the correlation of y(n) and y(n)e’2**", with
© <

normalizing constraint on h; and hg, it will result in a
filter for extracting the signal of interest.

Consider J (iou ) ’olz),

ot . °
|h1R“h2 lz

J(hlyhz) = °
h1 Rz.t h1h2 Ruu h2
~1/2
| hl z/z sz/ Rzu h2 I

: (©)
h1 R::z h1h2 Ruu h2
Using Cauchey-Scharz inequality, the optimum fil-
ters are given by

[ =1 0
hix R,z Roy h; (10)
0 "l o~ 0

hyx R, Rzy hy (11)
By substituting Eq.(11) into (8), the cost function
becomes a generalized Rayleigh quotient in Ioz,l, ie.,
Lo ;"I [RzuR_IRT ];"1
T(h, ) =~z el B
h1 Rzz hl

Therefore the necessary conditions for maximizing the
cost function are given by:

[ a1t ~=1- [
Ama:: hz-—“—- Ruu Rzusz Rzu h2 .

Using the power method[2], ;;1 and lozz can be solved
iteratively by following fomula

ha (n) = ga2(m)Ros(m)RL (1) By (n=1)  (12)

ki (7) = g1(n)Rps () Beu(n) bz (n),  (13)

where g( j(n) are the power-normalizing gain constants.
The correlation statistics can also be calculated recur-
sively by

Ray(n) = (1- 1/n)Ray(n — 1) + 1/nz(n)y! (n) (14)

for arbitrary signals (n) and y(r).



3.1. Simulation Results

In order to test the two different adaptive algorithms,
we carry out some computer simulations. The input
signal consist of two BPSK signals with additive white
Gaussian noise. One of the two signals is considered to
be the desired signal and the other is the interference.
Fig.1(a) (SINR = 0db) shows that the original spectra
overlap each other. Fig.1(b) shows the recovered signal
spectrum with LMSA-FRESH Filter. It could be seen
that the overlaped interference has been removed after
LMSA-FRESH filtering. Figl(c) and Figl(d) show the
corresponding eye-diagram for the input signal and the
adaptively filtered signal. It can be seen that the eye
is open after adaptive filtering. Fig.2 shows the same
scenario with BA-FRESH filter. Again, the interfernce
has been removed. Similar simulations have been car-
ried out using signals such as QPSK signals and AM
signals. The same improvement could be observed.

4. CONCLUSION

In this paper, using the cyclostationarity of signals,
two new kinds of adaptive frequency shift filters are
proposed. The cyclic adaptive filtering algorithms and

their characteristics are developed and simulated. Among

the two new components Frequency Shift Filters, LMSA-
FRESH Filter is simpler and it provided acceptable
performance for carrier recovery. However, we must
provide the training signals. For BA-FRESH Filter, its
algorithm is more complex, but the only prior knowl-
edge required is the cyclic frequency of desired signals.
Both of these algorithm can adaptively extract desired
signals which overlap spectrally with interference. The
choice of the adaptive FRESH filtering method depends
on the conditions under which it is applied.
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