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ABSTRACT

A novel method is introduced for resampling irregu-
larly sampled data in the presence of noise. The esti-
mator is minimum variance(MV) and minimum mean
square error, under Gaussian assumptions, and well-
conditioned in general. The Shannon-Whittaker sam-
pling theorem is generalized to use raised cosine pulses
as basis functions. It is shown that this generalization
permits fast estimation with Q(N) computational re-
quirements for mildly oversampled signals (bandwidth
less than 0.9By, where By is the Nyquist bandwidth
of the resampled data). Also, some extensions of the
inverse estimator and its error characteristics are dis-
cussed.

1. Introduction

The Shannon-Whittaker sampling theorem gives a for-
mula and conditions for recovering a continuous-time
signal u(?) from its uniformly-spaced samples u(nT).
The formula is useful for resampling u(t) at a different
rate or even at non-uniformly spaced times £;. What
about recovering uniform samples u(nT) from noisy
non-uniform samples u(¢;)? This problem occurs in
the reduction of data from multi-rate multiplexed data
acquisition hardware, the tracking of speech movement
with the University of Wisconsin X-ray Microbeam sys-
tem being an example. We treat the recovery of non-
uniform samples from uniform samples as a forward
problem, and we formulate an inverse according to meth-
ods that arise in wavelet deconvolution, linear estima-
tion, or statistical curve fitting. We greatly reduce the
computational burden by substituting a raised cosine
pulse for the sinc pulse in the Shannon-Whittaker for-
mula. This limits the signal bandwidth to some frac-
tion of the Nyquist bandwidth, and we can trade com-
putational savings against how close this fraction is to
unity.
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2. Preliminary Theory

Consider a mixed analog-digital signal path with finite-
energy analog input u(t) with Fourier Transform(FT)
U(jw). The output, y(t), is also analog with FT Y (jw).
The discussion used here is based on [5]. Start by sam-
pling u(t) as follows

k] = u(kT) 22 {F(eivT) = % Zﬂ: U(jw + jnwo)
(1)

where woT = 27 and the Discrete-time Fourier Trans-
form (DTFT) is defined as

x/T
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-x/T

F(e“T)= 3 fk)e *T. (3)

k=—o00

Next, use reconstruction filter R with impulse response
7(t) so that

y(t) = Y Ulk]r(t — kT) <5 Y (jw) = T(/“T)R(jw).
E
(4)
If U(jw) and R(jw) are bandlimited to |w| < wqg/2,
then the equivalent analog filter relationship is

Y (jw) = 7 R(w)U ) )

and

o(t) = % S ulkTIr(t - kT). (6)
k

Note that the input samples u[k7] are weights of the su-
perposed impulse responses r(t—k7'). This is a general-
ization of the Shannon-Whittaker sampling theorem[5).
In that theorem, R(jw) = T - rect(2w/wo) = r(t) =
sinc(wot/2), and an interpolated sample y(tg) could de-
pend on an infinite number of weighted sinc(t) func-
tions.
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3. The Raised Cosine Pulse

One way to perform generalized resampling is to use
the “raised cosine pulse” as a basis function. Instead
of r(t) = sinc(wot/2), use

p(t) = sinc(wot/2) - %, (7

where 0 < o < 1, as described in [4]. An important
property of the raised cosine pulse is that its spectrum
is unity for w < (1 — a)wo/2 and that the tails of p(t)
decay at least as fast as 1/t3. For sufficiently oversam-
pled signals,

BW < (1= a)wo/2, (8)

this pulse has in no in-band distortion[4]. Also, the use
of p(t) results in efficient numerical methods as shown
below.

4. The 6, Method

Assume that y is a vector of noiseless exact observed
samples, in M groups of n, as

[W(nT + 61), y(nT +63), ..., y(nT + &),
y(2nT + 61),y(2nT + 62), ..., y(MnT + 6,)]T

y:

y = [y(t), u(t2), - .., y(tan)l”

where T is the sampling interval defined above, and M
and n are any positive integers. The goal is to estimate
the resampled u where

u=[y(nT),y((n+1T),...,y(Mn+n-1)T)]T

u=[y(t]), (), -, y(tha)]” -

Using (6) above, we form the linear equation
y = Hu

where
1

TP (ti=1). 9)

This equation can be solved using standard least squares
techniques yielding

H;; =

i=(HTH)  HTy. (10)

Unfortunately, the least squares formulation can be
extremely ill-conditioned[1]. In fact, for large over-
sampled data sets, the matrix HTH will usually have
small eigenvalues, and the inverse problem will be ill-
conditioned in general[l].

Consider instead the observation noise case

y=Hu+n (11)
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where n is independent identically distributed (IID)
Gaussian noise. Further, assume that u is IID Gaus-
sian, so that
E{nnT} = ¢’I E{uul} =+*I (12)
In this case, it can be shown that the minimum vari-
ance(MV) estimator is(6] i = E{uyT} [E{yyT }]—1 y
or
i=HTHHT +y72D) 'y (13)
where v = v2/0? can be determined from the data[7].
This solution is also shown to be the minimum mean
square error Bayes estimate under Gaussian priors, as
well as the Ridge Regression estimate[1][2][3], so other
statistical methods exist for estimation of 4% from the
data. The estimator (13) is well-conditioned in general,
and it has many other desirable properties1].
Although the solution (13) requires O(M3n3) op-
erations in general, observe that by using the raised
cosine pulse as a basis function, H becomes approxi-
mately banded with bandwidth w < Mn such that for
some 0 < ek 1,

lp(ti—t3)|° <e forall |i—jl>w/2. (14)

If this condition is true, then we can use banded matrix
solution techniques to approximate the true solution in
O(w?Mn) operations. It can be shown that for fixed
€, this solution will be roughly O(Mn) as Mn — oo,
provided the banded approximation holds. For any o >
0.1, the raised cosine pulse energy has this banded form
with w € Mn as Mn — oo, provided the largest gap
between samples, max; ; |t; — t; |, is bounded. Even if
this condition is violated, the matrix H remains near
sparse and the computational bounds often hold.

5. The 6,1 Method

Another important property of the raised cosine and
sinc pulses is that they have zeros at k7 for every k # 0,
and r(0) = 1 for these pulses. If we assume §; = 0, and
the noise is small, we see that

y(ti) = y(t7) fori=1+kn, £>0.

Thus there are M values of u which are observed di-
rectly, resulting in a reduced computational require-

ment Cp_q
n—1

Cn-_]_ = Cn (15)

where C, is the computational requirement for the 6,
method. For n < 5 this savings can be significant.

6. Edge-Effect Compensation

In general, these resampling estimators will exhibit more
error at the ends of the interval. This is not surprising
since the infinite series was simply truncated to form
Mn equations. Alternately, it was implicitly assumed
that y(t) = 0 for ¢t < ¢} and t > t},,. The following
modifications attempt to compensate for edge effects.



6.1. Case 1: Known outliers

For this case, assume that at least w/2 observed values
y(t) are known before and after the interval {t1,¢prn]
where w is the approximate matrix bandwidth as de-
fined in (14). Form the augmented matrix equation

Hy
y=| H
Hp

u+n=Hyu+n (16)

where Hy is an Mn+ w by Mn rectangular band ma-
trix with bandwidth w. This system can be solved
efficiently using roughly O(w?Mn) operations.

6.2. Case 2: Unknown outliers

For the case where there are only Mn observed values
of y(t), assume that the unknown values of y(t) are
elements of random vectors nr, and ng so that

y=Hu+ Erny +Egrng+n (17)
where ny and np are zero mean with
E{nrnl} = E{ngnk} =2l (18)

and y, H, Er, and ER are known. In addition as-
sume that nr, ng, n, and u are mutually independent.
Therefore

E{uyT} = E{uu”HT + unf Ef + unREE + unT }
E{yy"} = v*HHT + 02ELE] + c}EREL + 021 (19)
Then the MV estimator is

-1
i =?HT (v2HHT +02ELE] + 0c2EREL + 0'2I) y.

Although the matrix (19) is not the same form as be-
fore, it is still approximately band form with band
width at most 2w. Therefore this system can be solved
efficiently using roughly O(w?Mn) operations.

6.3. Case 3: Truncation

For this case, assume that the constraint y(t) = 0 for
t <1} and t > t},, results in unknown edge transients
which decay roughly exponentially from the edges of
‘the interval. Perform a standard estimate without any
outlier compensation, and then truncate the ends of
the solution vector.

6.4. Case 4: Linearly Interpolated Edges

Since 1/t3 convergence of the p(t) series is not fast
enough to prevent edge transients, we can try replacing
the heavily truncated edge series equations with a more
quickly converging series. For the example below, the
p(t) series was replaced with a zero-th order interpolat-
ing spline, or, linear interpolation. Typically, the first
few and last few rows of H are based on p(t) = p/(2),
where

() =1-|t/T] for —T<t<T (20)
and zero otherwise. While the p(t) series is subopti-

mal, it has the effect of reducing estimation error due
the series truncation.
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7. Examples

7.1. Resampling error versus § and w

The 8,1 method was used, where n = 2, T = 1, and
M = 64. Note there is only a single §; parameter, 4,
and the observed samples y come in groups of n, or
pairs. The goal is to estimate the resampled u where

u= [y(l),y(?),...,y(l?S)]T.

The function y(t) was chosen to be y(t) = 0.9 cos(wt)+
0.3 sin(wt), where w was varied to illustrate frequency
domain characteristics. The truncation method was
used to determine relative error, in dB, which is defined

A\ 2
RE = 10log 10 (M) . (@)
2 (w(9)

In the truncation method, only the middle portion of
the solution is used. For this example, the summations
in (21) cover only 19 < 7 < 109. The raised cosine pulse
p(t) was used as a basis function with & = 0.4. Due
to the symmetry of p(t) about zero, the performance
of the algorithm is highly symmetrical about § = 1.
Also, the error near § = 1 is vanishing — 0, since
the interpolation is very close to observed data. For
a = 0.4, the raised cosine unity passband is w < (1 —
a)wo/2 = 1.88, so higher w results in distortion. The
RE surface is shown in Figure 1 with d = §, and w
= w. Figure 2 shows the same computation for the least
squares estimator (10) above. Note that the region near
d=2 is invalid due to ill-conditioning.
7.2. Maximum Absolute Error
Absolute error is also an important issue. The maxi-
mum absolute error was computed using the parame-
ters above, with the exception that the ends were lin-
early interpolated (three samples at each block end)
rather than truncated. The quantity plotted in Figure

3is
_ max; |u; — y(l’)l)

MAE = 10log 1o ( s [5(0)] (22)
which is based on the Lo, norm. Since the MV resam-
pling estimator is a function of L, norms, it is unrealis-
tic to expect it to perform well under the Lo, criterion.
The -13 dB contour corresponds to a maximum error of
5%, and this region roughly constrains w < 0.4. Thus,
in general, the data must be oversampled at a greater
rate to meet this criterion.

8. Conclusion

The fast MV estimator described here is both accurate
and well-conditioned for sufficiently oversampled sig-
nals. Although series truncation results in errors near
the start and end of the estimate, several modifications
are presented to reduce this effect. If the observation
noise is Gaussian, then both bandlimited signal estima-
tion (in noise) and resampling can be completed opti-
mally in one step.
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Figure 1: MV Error Surface (v = 107%) Figure 2: Least Squares Error Surface
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