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ABSTRACT

The discrete phase retrieval problem is to reconstruct a
discrete-time signal whose support is known and compact
from the magnitude of its discrete Fourier transform. We
solve the 2-D discrete phase retrieval problem by partition-
ing it into a mostly-DECOUPLED set of 1-D phase retrieval
problems. The discrete and modulated Radon transforms
are used to formulate two coupled 1-D problems, the solu-
tion to which then specifies solutions to the other DECOU-
PLED 1-D problems. The latter may in turn be solved
in parallel; however, using the solution to one problem
as the input to a neighboring problem reduces the com-
putation significantly for serial computers. Unlike other
exact 2-D phase retrieval methods which rely on tracking
zero curves of algebraic functions or equivalent operations,
no continuous-function-based methods are used here. This
makes the procedure more robust numerically.

1. INTRODUCTION

The problem of reconstructing a signal (1-D) or image (2-D)
known to have compact support from its Fourier transform
magnitudes arises in several disciplines [1]. The signal or
image is reconstructed if the missing Fourier phase is recov-
ered; hence the term “phase retrieval.” For details on the
history and applications of this problem see [1]. Since the
signal or image has compact support, its Fourier transform
may be sampled in frequency. Also, the signal or image is
often assumed to be bandlimited, so that it can be sampled
in the time domain as well. This leads to the discrete ver-
sion of this problem, in which a discrete-time signal known
to have compact support is to be reconstructed from the
magnitude of its discrete Fourier transform (DFT). For de-
tails on discrete phase retrieval problems see [2]}-[3].

The most common approach for phase retrieval prob-
lems is to use one of the iterative transform algorithms [1],
which alternate between the time and frequency domains.
However, these algorithms usually stagnate, failing to con-
verge to a solution. Other methods have been proposed;
see references in [1].

In this paper we then solve the 2-D phase retrieval prob-
lem by partitioning the 2-D problem into 1-D problems,
which can then be solved in parallel. The appropriate solu-
tion to each of these maultiple-solution 1-D problems is se-
lected by first solving two coupled 1-D problems, obtained
using the discrete Radon transform and what we define as
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the modulated discrete Radon transform. This is quite dif-
ferent from partitioning procedures proposed elsewhere [4].

Our method is exact and is guaranteed to obtain the
solution in a finite number of operations, in contrast to it-
erative transform methods which almost always stagnate on
2-D problems. It also does not require the extremely unsta-
ble numerical operation of tracking zero curves of algebraic
functions, which has been proposed for continuous phase
retrieval problems [5] and discrete problems [6}-[7]. Since
zero locations vary widely with small changes in polynomial
coefficients, these methods are impractical due to numerical
roundoff error. Our method is also sensitive to noise, but
less so than these other methods, since more than two 1-D
problems can be coupled together. This produces a redun-
dancy which can handle small amounts of noise. We discuss
this elsewhere.

2. FORMULATIONS OF DISCRETE PHASE
RETRIEVAL PROBLEMS

2.1. Quick Review of 1-D Discrete Phase Retrieval

The 1-D discrete phase retrieval problem is as follows [2]-
[3]. Let z(n) be a discrete-time periodic signal of period N
and X (k) be its N-point DFT

N-1
X(k) =Y z@e M k=0,1,..N-1 (1)

i=0

Given knowledge that only M consecutive values of z(n)
differ from zero (i.e., z(n) has M-point support) and given
the values of the DFT magnitudes | X (k)] for 0 <k < N-1,
determine z(n) (or equivalently X(k)).

There are some trivial ambignities in this problem. Clearly
if z(n) is a solution then z*(—n), cz(n) and z(n — b) are
also solutions for any integer b and any complex number ¢
having unity magnitude |c| = 1 (note the third is actually
a special case of the second). We refer to c as the arbi-
trary phase factor. If z(n) is also constrained to be real,
then ¢ = 1 only. We call these trivial ambiguities the
associated solutions to a given solution z(n).

Excluding these associated solutions, there are almost
surely 2™ solutions to the discrete 1-D phase retrieval prob-
lem. This can be seen by noting that the set of squares
of the DFT magnitudes is the DFT of the autocorrelation
r(n) = z(n) » z*(—n) of z(n). The z-transform of r(n)
is X(2)X*(1/z"), where X(z) = _ni'z(n)z" is the z-
transform of z(n) (without loss of generality the M-point
support of z(n) is specified as interval [0, M — 1]). Since
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X(z) is a polynomial of degree M—1, z*™~VX(2)X"(1/z")
is a polynomial of degree 2M —2 whose zeros occur in conju-
gate reciprocal pairs (if z is a zero then 1/2" is also a zero).
One of each of these reciprocal pairs of zeros must be chosen
to form X(z) so that z(n) will have M-point support; this
can be done in 2M~! different ways (if any zero lies on the
unit circle z = 1/z°, this choice disappears for that zero).
I the associated solution z°(—n) is counted as a solution
distinct from z(n), the number of solutions increases to 2.
We consider these to be distinct solutions later.

H z(n) is real, the zeros must be chosen in complex
conjugate pairs, so there are only 2AM=1)/2 golutions if all
of the zeros of X(z) are complex (real zeros have no com-
plex conjugate requirement; note that if M is even at least
one zero is real). For a signal with randomly chosen val-
ues z(n), then almost surely there are no zeros on the unit
circle and no more than one real zero, so we can use the
above expressions for determining computational complex-
ity. Here “almost surely” means that the set of exceptions
has Lebesgue measure zero. ;

2.2. 2-D Discrete Phase Retrieval

The discrete 2-D phase retrieval problem is simply the 2-D
version of the 1-D problem defined above {2]-{3]. It almost
surely has a unique solution (to the trivial ambiguities listed
above), for images whose values have been selected at ran-
dom. In the sequel, we assume that the given 2-D Fourier
magnitude data are such that there is exists a unique solu-
tion to the phase retrieval problem.

3. DISCRETE AND MODULATED RADON
TRANSFORMS

Recall that the (N x N)-point 2-D DFT is defined as

N—-1N-1

Z Z z(iy, ig)e~ Pk Hiaka)/N,

i3=20 i3=20

X (ks, ka) = )

Let z(i1,12) have (M x M) support, where N > 2M to
avoid aliasing. Setting k1 = k2 = k in (2) and recognizing
the 2N-point 1-D DFT (1) gives X (k, k) =

N-1N~-1 2N-1

Z Z z(il,iz)e—jZR(i1+ig)k/N = E i(i)e—j27i2kl(2N)
£1=0é3=0 i=0
3)
where
M—-1M=1
E@)= D Y 2(in,ia)8(i—i1—h2),0 < i S (2M —1) (4)
i1=0 ig=0

is the discrete Radon transform of z(i,12) at 45 degrees.
Note that Z(s) is the sum of all values of z(i1,42) along
lines of slope -1 (at an angle of 135 degrees). That this is
also the 2N-point inverse 1-D DFT of X(k1, k2) along the
slice k; = k2 is the discrete projection slice theorem of the
discrete Radon transform. Note that a 2N-point 1-D DFT
is required in (3) to avoid aliasing, since £(s) has 2M — 1-
point support. Also note that the 2N-point 1-D DFT of Z(1)
is zero for odd values of frequency, but only even values of

[*Te )l

frequency are needed for X(k,k) (see (3)). This can be
understood by noting that the separation between constant
lines of §; + 42 is 1/\/5, not 1, and the spacing between
successive values of X(k, k) is V2, agreeing with the scaling
property of Fourier transforms.

Now let N be even, and set k1 + k2 = N/2 in (2):

N—-1N-1

X(ki, k3 = N/2-k) = Z Z z(;l,ia)c—jZ’r(ith:(N/z-kx))/N

3 =0 ig=0

N-=1N-1 N-1

= E z z(il’iz)(_l)ige—ﬁr(i,—i;)kl/N = Z i(i)e-j2wi2k1/(2N)

i3 =0 i3=0 =0

®)

where we now define

M-1M-1

B@) = Y 2(ia, ia)(—1)?6(i~ir+i2), ~(M~1) < i < (M-1)

1m0 igm0 ( )
6
as the modulated (by (—1)*?) discrete Radon transform of
z(i1,42) at 135 degrees. This transform seems to be new.
Note that z(i1, i2) is multiplied by (—1)2, but this ob-
viously does not affect the support or real-valuedness of
£(41,42). #(3) is the sum of all values of z(i1,d2)(—1)"
along lines of slope 1 (at an angle of 45 degrees). Again
a 2N-point 1-D DFT is required in (5) to avoid aliasing,
since Z(i) varies from —(M —1) to M - 1.

4. PARTITIONING ALGORITHM

4.1. Partitioning

Our partitioning algorithm is based on the fact (which we
have shown elsewhere) that a 1-D phase retrieval problem
with a single specified phase value (after fixing the arbitrary
phase factor c) almost surely has a unique solution. That
is, if X(k), not just |X(k)|, is known for some single k¥ #
0, N/2, then this picks out one of the 2M solutions of the
problem. This is a Fourier domain analogue of the well-
known result that a 1-D phase retrieval problem with a
specified endpoint £(0) almost surely has a unique solution
(8]-{9]-

Indeed, the specified phase value result is essentially
equivalent to the specified endpoint problem. To see this,
suppose that there are two solutions Xi(k) and X3(k) to
a 1-D phase retrieval problem that have the same phase at
k = ko. This means that the z-transforms X1(z) and X2(z)
of the two solutions z1(n) and z2(n) agree at z = e™72"*e /N,
Without loss of generality, we can scale z by a constant
p; this multiplies the z;(n) and their (identical) autocor-
relations r(n) by p", but there are still two different solu-
tions whose z-transforms agree at z = pe~P3"Ro/N Lt
ting p — O, X,-(pe"”""/ ) — X:(0) z;(0), so that
we have two different solutions having the same endpoint
£1(0) = z2(0). Hence a nonunique solution specified end-
point problem can be associated with each nonunique so-
lution specified phase problem. Thus the specified phase
value problem, like the specified endpoint problem, almost
surely has a unique solution.



4.2. New Algorithm

The M x M support 2-D phase retrieval problem can be
solved as follows:

1. Solve the two coupled 1-D phase retrieval problems of
reconstructing Z(s) (defined in (4)) and £(s) (defined
in (6)) from their given DFT magnitudes | X (k, k)]
and | X(k, N/2 — k)| (see (3) and (5)). Since £(s) and
£(1) are both real, there is no arbitrary phase factor ¢
in either problem, and the phases X gN /4, N/4) must
agree. This picks out one of the 2** solutions for
each problem, and specifies the phases X'(k, k) and
X(k,NJ/2—k) for all k.

2. Solve the M decoupled 1-D phase retrieval problems
of reconstructing the phase of each row of X(k;, kz)
from | X (ki, k3)|. That is, fix k1 and solve the result-
ing 1-D phase retrieval problem in k2, and do this
for each k;. Note that since z(ny,n3) has M x M
support, its half-2-D transform X (ki,n2) still has M-
point support in n2. Each problem has its phase spec-
ified at two points X (k1, k1) and X (k1, N/2— k1), so
the arbitrary phase factor ¢ is determined and a single
solution picked out. Once all of these problems have
been solved, the 2-D phase has been recovered ev-
erywhere, so the entire problem has been solved (the
single row k3 = N/4 may be handled separately).

3. The specified-phase 1-D problems can be solved using
any of the methods listed below.

4.3. Alternatives for Solving 1-D Problems

We have devised several methods for solving the decoupled
1-D problems. The optimal method depends on the com-
puting environment (is serial or parallel computation avail-
able?): ‘ :

1. The most straigntforward method consists of finding
the zeros of the z-transform of the autocorrelation,
computing the phase contribution from each zero at
the point X (ko) of specified phase, and determining
the phase of X (ko) for each of the 2™ choices between
each of the M zeros and their reciprocal conjugates
by simply adding the M phase contributions. Each
choice can thus be checked with just a few additions.
This method is ideal if parallel or distributed compu-
tation using only very simple processors is available,
since the 1-D problems are all completely decoupled
and the operations required are trivial (additions and
checking equalities).

2. A branch-and-bound algorithm offers significant im-
provement over an exhaustive search; such an algo-
rithm was successfully used for the specified endpoint
phase retrieval problem {9]. We have developed a sim-
ilar algorithm for the present problem. This can also
be done using parallel or distributed computation,
although the operations are now more complex.

3. We have discovered that the zero configuration (viz.,
inside or outside the unit circle) does not change
much from one 1-D problem to its neighbor. This
allows the solution to a 1-D problem to furnish an
excellent initialization to its neighbor. Proceeding in

sequence, we can solve all of the 1-D problems in suc-
cession. We have found that only a minor search is
required every so often, depending on how many ze-
ros have flipped from inside to outside the unit circle
(or vice versa). This is the fastest algorithm on a
serial machine. However, it cannot be parallelized,
since the 1-D problems are solved in sequence.

4. Iterative transform algorithms [1] can be used for
the 1-D problems. We have been unable to discover
a clear preference here—sometimes they work better
than the above methods, sometimes they do not con-
verge at all. This unpredictability makes them un-
suitable, in our view.

5. NUMERICAL RESULTS

We compare our method to the hybrid I/O algorithm [1]
on the 19 x 19 image (M = 19, N = 64) shown in Fig.
(2). Our method, implemented with a branch and bound
strategy, reconstructed the image perfectly after checking
40012893 leaves. The hybrid I/O method was initialized
with three random-phase images. Twice it converged and
once, when initiated with Fig. (b), it stagnated at Fig. (d).
Its performance vs. #iterations is shown in Fig. (c).
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(d)

Comparison of the paritioning algorithm and the hybrid I/O algorithm.
(a) the image used; (b) an initial estimate; (c) performances of three
runs of the hybrid I/O algorithm; (d) stagnated image.
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