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ABSTRACT

In most estimation and design problems, there exists more
than one solution that satisfies all constraints. In this pa-
per, we address the problem of estimating the complete set
of feasible solutions. Multiple feasible solutions are fre-
quently encountered in signal restoration, image reconstruc-
tion, array processing, system identification and filter de-
sign. An estimate of the size of the feasibility set can be
utilized to quantitatively evaluate inclusion and effective-
ness of added constraints. Further, set estimation can be
used to determine a null feasibility set. We compute ellip-
soidal approximations to the set of feasible solutions using
a new ellipsoid algorithm and the method of analytic cen-
ters. Both algorithms admit multiple convex constraint sets
with ease. Also, the algorithms provide a solution which is
guaranteed to be in the interior of the feasibility set.

1.

Most estimation and design algorithms can be classified as
point estimation schemes. Typically, the algorithms involve
optimizing a criterion with or without constraints. Maxi-
mum entropy (MEM), minimum mean-square error (MMSE)
and maximum likelihood (ML) are examples of the optimal-
ity criterion frequently employed in estimating solutions.
Choice of the optimality criterion, in many cases, is highly
subjective and can be greatly influenced by the tractability
of the resulting optimization problem.

In [1}, Youla and Webb introduced the estimation prob-
lem in a set-theoretic framework. The underlying principle
of the set theoretic formulation [2, 3] is to express each de-
sired property of the solution as a set in the appropriate
parameter space. The intersection of these property sets is
the set of feasible solutions. This formulation discards the
notion of a unique optimal solution.

Apart from avoiding an optimality criterion, the set the-
oretic formulation offers other advantages. The change in
set sizes provides a measure of the impact of adding or al-
tering a constraint. Further, a small set of feasible solutions
implies that all point estimation schemes will be compara-
ble in their performance under any criterion. Similarly, in
design applications, smaller sets of feasible solutions mean
tighter designs. Importantly, set estimation can be effec-
tively used to determine null feasibility sets.

Here, we seek to compute a measure of the uncertainty
inherent in a given feasibility problem. In most practical
applications, exact estimation of the feasibility set is an
NP-hard problem. However, ellipsoids are cheaply com-
puted and can provide bounds on the feasibility set. The
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approximation gives a “trust region” for a design or esti-
mate. Further, we obtain, as a byproduct, an estimate of
a center for the feasibility set, in the spirit of Bayesian or
minimax estimation.

2. Problem Formulation

Let Ky,...,Kar represent closed convex subsets of R". We
assume that set X; is bounded. The intersection N¥,X;
represents the set of feasible solutions and is denoted by
F. The feasibility set is closed and convex since X;, i =
{1,..., M} is closed and convex. Additionally, F is bounded
since K; is assumed to be bounded. Thus, there exists a
unique ellipsoid of minimal volume which contains F [4].
We seek to estimate the minimum volume ellipsoid which
bounds the feasibility set F.

3. Ellipsoid Algorithm

In this section, we present an ellipsoid algorithm to esti-
mate feasibility sets. The ellipsoid method was used by
Khachiyan [5] to prove the polynomial solvability of linear
programming problems; other applications are developed
in [6]. We derive optimal cutting halfspaces. Polynomial
time convergence is proved and a characterization of the
limit ellipsoid is given.

The idea of the ellipsoid algorithm is simple. The algo-
rithm initializes with a ball around the bounded constraint
set, Ky. At every step, a cut is computed and used to obtain
a reduced volume ellipsoidal approximation. The process is
repeated until no_further reduction in volume is possible.
The idea of computing a cut is similar to having a separa-
tion oracle [4]. Both the separation oracle and the optimal
cut provide a halfspace which serves to reduce the volume
of the ellipsoid bounding the feasible set. A separation ora-
cle provides a separating hyperplane for the feasibility set.
On the other hand, the cut computed in the proposed el-
lipsoidal algorithm is not only a separating halfspace but is
also a support halfspace of one of the constituent constraint
sets, K1,...,Kpm.

3.1. Optimal Cuts

Definition 1 Let K be a closed convex subset of R". Also,
let £ = {z: (z—¢c)TP ! (z — c) < 1} denote an ellipsoid
in R". A support halfspace, H = {z : a7z < 8}, of K is
called the optimal cut for £ if the volume in the intersection,
£ N H, is minimized among all support halfspaces of K.

The following propositions allow the computation of the
optimal cut provided by a closed convex set K, with respect
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to an ellipsoid £ C R". The basic idea of finding an optima.l
cut is as follows. Consider the affine transformation z =

“Yz—c) where P=JJT". T In the tranformed coordinate
system, the quantity a = (a¥c — 3)/VaT Pa represents the
a.lgebra.xc distance of a cutting ha.lfspace, J~YH —c), from
the origin. And the cut, H = {z : a’z < 8}, for which «
is maximized, provides minimal volume in the intersection

ENH [7).

Proposition 2 Let £ be an ellipsoid with center ¢ and de-
fined by the matric P > 0. Also, assume that K is a closed
convez set. If ¢ € K, then the optimal cut, H, provided by
the set K is given by

H = {z:a"z<p}
a = JT(-a)
B = —lal+a"c

and

a, = H]-l(,c_c)(O) and P=JJ7F
where Il 7—1(x_.) represents the nearest point projection onto
the closed convez set T~ (K — c).

For proofs of the results, see [8].

For the case when the the center of the ellipsoid lies in the
convex set K, we introduce the following definition. Assume
that M is a closed convex set such that the origin belongs
to the set. We define g(M) as a minimum norm element in
the boundary of the set M. In other words, g(M) can be
viewed as an output of the following constrained program

q(M) = argzéng =l

We call ¢ the minimum-norm boundary function.

Proposition 3 Let £ be an ellipsoid with center ¢ and de-

fined by the matriz P > 0. Also, assume that K is a closed
o

convez set. If c € K, then an optimal cut, H, provided by

the set K is given by

H = {z:a"z<p}
a = T (a)
B = ”a'pllz +aTc

where

ap =q(J"'(K=c)) and P = JIT
Ifc € 8K, then a = ¢(c) and B = aTc, where ¢(z) is an
outer normal to K at z € 0K.

3.2. Ellipsoid Algorithm

In this section, we obtain an ellipsoid algorithm using the
optimal cuts from Section 3.1. The closed convex con-
straints Ki,...,Kar are known via their nearest-point pro-
jection and it is assumed that the mirimum-norm boundary
function is computable for each constraint set. The ellipsoid
algorithm initiates with a ball containing the bounded set
Ki. At every step, M optimal cuts are computed, one for
each of the constraint sets K1,..., K. The cut which offers
the maximal volume reduction is chosen from the calculated
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optimal cuts. Using the chosen cut, an updated ellipsoidal
approximation is obtained. The algorithm terminates once
the update results in no further reduction in the volume of
the ellipsoid. The algorithm can be written as follows.
Ellipsoid Algorithm :

1. Initialize the algorithm with an ellipsoid £o with cen-
ter cg = 0 and K; C €o. Set k= 0.

2. Find the optimal cuts Hg,,Hx,,...,Hx,, for the
sets Ki,...,Ka with respect to the ellipsoid £, us-
ing Propositions (2) and (3). Choose H as the cut
providing the maximum volume reduction.

3. If termination condition met then STOP else goto
step (4).
4, Compute i1 as the minimum volume ellipsoid bound-

ing the intersection £xNH (the closed form expression
is given in {7, 8]).

5. k = k + 1. Goto step (2).

The termination condition at step (3) is evaluated as fol-
lows. Let H = {z : aTz < B} be the halfspace chosen at
step (2). The termination condition is met if

ater -
VaTPea

where the constant v satisfies 0 < 4 < 1/n. The vector
cx represents the center of the ellipsoid £ defined by the
positive-definite matrix Pi. Figure 1 illustrates a typical
step in the proposed ellipsoid algorithm.

1
<—;+“7

zZ= ]k-l(z —cx)
T A

(ii)

Figure 1: Typical steps in the ellipsoid algorithm : (i)
Transform current approximation £ into a unit hyper-
sphere 5k+1 and calcula.te optimal cut for K a.nd (ii) calcu-
late new approximation 5k+1, assuming that H was chosen
in step (2).



4. Analysis of Ellipsoid Algorithm
Lemma 4 For the ellipsoid algorithm of Section 3.2

1. If Vi = vol(Er), then Vi < Vi_y.

2. F C &k, where F is the bounded feasibility set.

Since vol(£x) > 0 and the volumes of the ellipsoids vol(£4)
form a strictly decreasing sequence, hence the volumes con-
verge to some real number V' > 0. Thus, the proposed
ellipsoid algorithm provides a strictly decreasing sequence
of ellipsoidal approximations containing the feasibility set.
In other words, the quadratic approximations generated in
the form of ellipsoids at every step improve as the algorithm
progresses in time.

Theorem 8 Let K1,...,Kar be closed and bounded convex
subsets of R™. Also, assume that the set K, is bounded. Let
F = N¥,K; denote the bounded, closed and convez feasi-
bility set. Then the sequence of the ellipsoids €, generated
by the ellipsoid algorithm, terminates in a finite numbder
of steps to an ellipsoid € such that F C €. The num-
ber of steps is bounded by log(Ve / Vo) log(8) ™!, where Vp =
vol(€q) and V., represents the volume of the unique mini-
mum volume ellipsoid bounding F. Also, the center of the
ellipsoid lies in the interior of the set F.

It is important to be able to estimate the size of the ellipsoid
computed using the proposed ellipsoid algorithm. To this
end, we modify a result provided in [4].

Theorem 68 Let ~1/n+~ = —1/n, where 0 < v < 1/n,
and & is the limit ellipsoid. Then the following holds

-
Vn(ny +1)

where F C R" is the feasibility set.

Ein = ECFCE

Note that the proposed ellipsoid algorithm does not com-
pute an optimal cut for the set F; instead, the cut is chosen
from the cuts computed for the individual sets Xi,...,Ks.
H, instead, an optimal cut for F is computed at step (2)
of the algorithm, we refer to the resulting algorithm as the
optimal algorithm. To obtain an optimal cut for F requires
computation of II#(0) or g(F) which, in practice, may not
be easily computable. On the positive side, in Corollary (7),
we demonstrate that the proposed algorithm performs as
well as the optimal algorithm, in the sense described below.

Theorem (6) provides a criterion to evaluate the perfor-
mance of the proposed ellipsoid algorithm. Let X and Y
be two algorithms which provide the two-sided approxima-
tions (r:£:,€;) and (ry&,,€,), respectively, of a bounded
and closed convex set. We say algorithm X performs better
than algorithm Y if r, < r,. Based on this criterion, we
obtain the following result.

Corollary 7 Let F = NM,K; ¢ R" be a bounded and
closed convex set where K; CIR", i = 1,..., M is closed
and convez. Also, K, is assumed to be bounded. Then the
optimal algorithm performs no better than the ellipsoid al-
gorithm proposed in Section 3.2, in the sense defined above.
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5. Method of Analytic Centers

The ellipsoid algorithm proposed in the previous section
seeks to approximate the feasibility set F from outside. As
a byproduct, both an inner approximation to F and a point
in F are obtained. In contrast, in this section, we proceed
by estimating the analytic center of the set F. Both in-
ner and outer ellipsoidal approximation to F are obtained
as a consequence. We call this a method of analytic cen-
ters (MAC).

We use the widely studied [9, 10] concept of the ana-
lytic center of a linear matrix inequality (LMI). An LMI is
defined as :

F@)£F+Y zFi>0

i=1

(1)

where € IR" is the variable and the symmetric matri-
ces F; = FT ¢ RP*? ,+ =0,...,n, represent convex con-
straints.

Many commonly encountered convex constraints can be
represented as an LMI [10]. The feasibility set F is given
by {z € R" : F(z) > 0}. The barrier function for F is
defined as [10]

#(z) & {

and has a unique minimizer z* referred to as the analytic
center of the affine matrix inequality F(z) > 0. Analytic
center provides inner and outer ellipsoidal approximations.
As proved in [9], there exists a pair of inner and outer ellip-
soids centered at z* and with shape determined by H(z"),
the Hessian of ¢ at z*. The following approximations hold
for F

logdet F(z)™!
oo

z€F
z g F

1
n(n —1)

where £ 2 {z ER":(z-2 ) H(z")(z—z") < 1}.
Finally, to compute the the analytic center, z*, a mod-
ified Newton-Raphson iteration scheme is given in [9].

6. Comparisons

The two algorithms differ in their basic philosophy. While
the ellipsoid algorithm (EA) proceeds by estimating the set
and provides a point estimate as a consequence, the method
of analytic centers (MAC) estimates a point in the set and
provides set estimates as a consequence.

ECFCE

Both the algorithms provide a pair of ellipsoids (€, £) such
that

r€ECFCE
where
r = Tga= m, for an ellipsoid algorithm
T = TMAC = ;),—(—nl-_l)’ for the MAC

For small v, 754 < rmac. Thus, the EA performs better
than the MAC in the sense described in Section 4.

Both the algorithms are computationally intensive. The
EA suffers from slow convergence, if the size of the feasibil-
ity set is small and the number of dimensions is large. Also,



computation of the projection operator and the minimum-
norm boundary function is expensive for quadratic convex
sets. On the other hand, the MAC requires computation of
the Hessian, gradient and the inverse of the Hessian. Ad-
ditionally, the sizes of the matrices involved grows linearly
with the number of constraints.

7. NMR Porosimetry

Finally, to illustrate application of the two set estimation
techniques, we consider a linear inverse problem arising
in nuclear magnetic resonance (NMR) porosity measure-
ments. The NMR spin-lattice relaxation technique recently
has been applied to the study of porous media, such as oil-
bearing rock formations [11] and microfiltration type mem-
brane filters {12]. The measured magnetization signal can
be described as a Fredholm integral equation of the first
kind,

M(t) = My / ” (1-2e7T) f(T1)dTy
0

where f(Ty) is the pore volume distribution function. Four
properties of the solution are expressed as convex constraint
sets. Specifically, we consider candidate distributions which
are nounegative, are zero outside the interval [10"3,10],
and have a fixed L; norm. The fourth constraint set is con-
sistency with the magnetization measurements: i.e., ||Af —
b|| £ 0.01, where b is the sampled data vector consisting of
32 samples of M (t), logarithmically spaced from 0.5 msec
to 15 sec.

We compute the constrained least-squares solution [3],
the regularized minimum-norm solution and the point esti-
mates provided by EA and MAC. The result is plotted on
a logarithmic scale in Figure 2. It is evident that incorpo-
ration of the constraints greatly improves the reconstructed
pore size distribution. Also, the inner ellipsoid has nonzero
volume, indicating that there exist distributions consistent
with all constraints. Moreover, the outer approximating
ellipsoid has a very small volume, implying that all con-
strained point estimators will provide similar performance
for this data.
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