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ABSTRACT

Resolution analysis for the problem of signal recovery from
finitely many linear samples is the subject of this paper.
The classical Rayleigh limit serves only as a lower bound
on resolution since it does not assume any recovery strategy
and is based only on observed data. We show that details
finer than the Rayleigh limit can be recovered by simple
linear processing that incorporates prior information. We
first define a measure of resolution based on allowable levels
of error that is more appropriate for current signal recov-
ery strategies than the Rayleigh definition. In the practical
situation in which only finitely many noisy observations are
available, we have to restrict the class of signals in order
to make the resolution measure meaningful. We consider
the set of bandlimited and essentially timelimited signals
since it describes most signals encountered in practice. For
this set we show how to precompute resolution limits from
knowledge of measurement functionals, signal-to-noise ra-
tio, passband, energy concentration regions, energy concen-
tration factor, and a prescribed level of error tolerance. In
the process we also derive an algorithm for high resolution
signal recovery. We illustrate the results with an example.

1. INTRODUCTION

The problem of recovering signals from linear measurements
arises in many applications, and several algorithms, linear
and nonlinear, have been developed and analyzed for this
problem. However, the fundamental question regarding the
resolution ability of a recovery algorithm in the presence of
noise and finitely many measurements is often left unan-
swered. Resolution ability is the ability to reproduce fine
details such as, narrow peaks or closely spaced peaks in a
signal. The study of resolution limits is important since, it
could help us assess the effectiveness of a particular algo-
rithm, and compare different algorithms in a rational man-
ner. Moreover, understanding the relationship between res-
olution limits and the various components of a recovery
problem and algorithm, could help us design better data
acquisition schemes and algorithms.

The problem of resolution analysis is twofold: first, we
require a meaningful measure of resolution ability; and sec-
ond, we have to be able to analyze the performance of a
reconstruction algorithm in terms of the defined resolution
measure. The earliest definition of resolution limit is the
Rayleigh Resolution Limit, which stipulates a resolution
limit of § if two equally strong point sources (impulse in-
tensities), § or more apart, are reproduced as peaks with at
least a 19% intensity dip and sources less than § apart are
not reproduced as well [1]. This definition is based solely on
the observed data and not on any recovery algorithm. It is
an acceptable definition when there is no processing of the
data to recover or enhance the features based on exploit-
ing prior information. The Rayleigh limit is thus a lower
bound on the resolution achievable. We might be able to do

This work was partially supported by the SDIO/IST un-
der contract DAALO03-91-G-0118 managed by the U.S. Army Re-
search Office.

Dr. S. Dharanipragadais currently with the Center for Speech
Processing at The Johns Hopkins University.

889

K. S. Arun
Department of EECS
Univ. of Michigan at Ann Arbor
Ann Arbor, MI 48109

better with clever signal processing that exploits prior in-
formation, but we should always be able to achieve at least
as much resolution as specified by the Rayleigh limit.

In this paper, we develop better estimates for resolution
limits in signal recovery algorithms that take into account
prior information, noise levels, and a finite number of mea-
surements. We find that where infinitely many noise-free
measurements are available, the resolution achievable is in
fact independent of the width of the sampling pulse and
depends only on the inter-sample distance. The Rayleigh
limit, on the other hand, is dictated by the width of the
sampling pulse. In the presence of noise however we find
that the resolution limit depends on the method of regular-
ization used in the recovery algorithm.

In the more practical situation in which only finitely
many noisy observations are available the notion of exact
recovery has to be abandoned and a new measure of reso-
lution is necessary [2], [3]. We define a new measure based
on allowable levels of worst-case error, and appeal to the
Fourier uncertainty principle to bring out the relationship
between resolution (detail) and bandwidth. In this sense
our definition is similar in spirit to the classical Rayleigh
resolution limit, but is based on a prescribed tolerance of
the relative error. With a finite number of observations the
worst-case error is unbounded and hence we have to restrict
the search to a smaller set of signals.

We restrict the class of signals to the set of bandlim-
ited and essentially timelimited signals, since it describes
most signals encountered in practice. This set is charac-
terized by the well known orthonormal family of functions
called the Prolate Spheroidal Wave Functions and is known
to be approximately finite dimensional, which enables us
to seek reconstructions from a lower dimensional subspace
of the space of bandlimited signals. Reduction in dimen-
sion causes an error in the reconstruction, which we call
the intrinsic error. A second error is incurred while de-
termining the parameters describing the lower dimensional
reconstruction. The reconstruction error is then the sum
of these two errors. We show that the worst-case values
of these two errors can be pre-computed for each choice of
reduced dimension. The error computation provides both
an optimal choice of dimension and a precomputed bound
on the resolution ability of the algorithm.

2. THE SIGNAL RECOVERY PROBLEM

We consider the problem of reconstructing 1-D continuous-
index signals from discrete linear measurements. The re-
sults presented here can be easily generalized to multidi-
mensional signals.

Let L2(R) be the space of finite-energy continuous-index
signals. Let Bs be the subspace of all signals bandlimited
to Ps = [5F, £] and let B denote the orthogonal projection
operator onto Bs.

We address the problem of recovering a signal from Bs
using discrete linear measurements. Let g; be measurement
signals giving measurements yq(1) as

ya(i) = (z,9:) = [ z(t)g:(t)dt. (1)

. R .
Let T be the Linear bounded operator on Bs representing
the measurement process. Then
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Tz = yq, (2)
where yq4 is the vector of measurements. If the number of
measurements is finite, yq lies in C?, where p is the number
of measurements, otherwise yq lies in 12(Z), the space of
finite-energy discrete-index signals.

In practice, the measurements are corrupted by noise.
Let nq denote the noise vector, then

2d = Yd + nd,

and the signal recovery problem is that of reconstructing =z
from zq4.

In the ideal case of infinitely many noise-free observa-
tions, we define resolution as follows:

Definition 2.1 (Resolution limit under ideal conditions)

A reconstruction algorithm is said to have an ideal resolu-
tion of § if signals bandlimited to [—7%, 5] can be recon-

structed perfectly under noise-free conditions. ]

By a simple frequency-domain analysis it can be shown
that if A is the width of the sampling pulse and 7 is the
inter-pulse distance, the resolution limit, in the adequately-
sampled case, is equal to 7 instead of A as predicted by the
Rayleigh limit {4]. In the noise-corrupted case however, the
signal cannot (in general) be perfectly reconstructed and
regularization is required. Regularization reduces resolu-
tion as seen in the example of Figure 1. In this example
r= Le and A = { and, hence, a resolution limit of r = +
is achieved in the noise-free situation. However, with reg-
ularization to combat noise the signal cannot be recovered
perfectly and hence resolution according to the above def-
inition is affected. A new measure of resolution is needed
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Figure 1: Effects of the spectral truncation and Tikhonov
regularization in the frequency domain. ——— true spectrum;
- - - with spectral truncation; — - — with Tikhonov scheme;

-+ sampling kernel spectrum.

that allows for imperfect reconstruction [2]. We develop
a measure of resolution based on the maximum tolerable
worst-case error as follows:

Definition 2.2 A reconstruction algorithm has ¢'-resolution
of 6 or better if the worst-case normalized reconstruction er-
ror {over all = € Bs and all na such that |jnqg|| < 9||Tz]]) is
no larger than ¢:

llz — 2]

H=ll?

Note that ¢’-resolution is defined for a recovery algorithm
and not for the recovery problem. In order to lower-bound
the €'-resolution limit for a particular recovery algorithm,
we require tight upper bounds for the worst-case normalized
reconstruction error.

<€ Ve Bs; Vng:||ndl®> < 97| T

3. RESOLUTION LIMIT IN THE PRACTICAL
SITUATION

In practice, only finitely many measurements are available.
Let p be the number of measurements. The measurement
operator is T : Lz(R) — CP and the reconstruction problem
is formulated as follows :

Given T, §, and measurement vector zq € C?, find z € B;
such that Tz = za.

The set of all signals in Bs satisfying Tz = yq is a linear
variety, ¥, with finite co-dimension p. The min-max opti-
mal solution, which is also the minimum norm solution, is
again given by

Ernis =T (TT") 2 (3)
The operator TT" is simply a p X p matrix.

Since the true signal can be any member of V, the supre-
mum of the normalized reconstruction error, 18 1.
Hence, we need to restrict the set of admissible signals ap-
propriately to get a non-trivial bound on the worst-case
error. However, having a finite number of measurements is
often justified because most signals encountered in physical
systems are essentially timelimited. Accordingly, we restrict
our attention to such signals.

Let T be the concentration window and W be the win-
dowing operator onto [. Let Gs(I') denote the set of
signals which are bandlimited to [5%, 5] and e-essentially
timelimited to T [5, 6]; i.e.,

A .

Ges(D)={z € Bs : [Wa|” 2 (1 = o)=l’}.  (4)

The set G.,s(I') represents most signals encountered in

physical imaging and information systems. Hence we have
the following definition of resolution:

Definition 3.1 A reconstruction algorithm on concentra-
tion window I' and concentration factor 1 — e with SNR >
;15 will be said to have €'-resolution of & or better if Yz €
Ges(T) and Vn s.t. |lnal| < || T3], L=2l- <.

With Ge,s(T) as the feasible set, the recovery problem be-
comes:

Given T, 6 and the measurements zq € C?, find
z € Ge5(T) such that Tz = z4.

The set Ges(T') has several interesting properties which
can be exploited to determine resolution limits. Many of
these properties are characterized by an orthonormal family
of functions called the Prolate Spheroidal Wave Functions
PSWF), {#:}{2,, and the associated eigenvalues, {A:}(2,
5, 6]. Since the resolution limit of a recovery algorithm is
based on the worst-case relative error, our objective is to
find an algorithm that will minimize the worst-case relative
error.

3.1. DIMENSIONALITY REDUCTION

It is well known that G s(T) is essentially finite dimensional
and among all N-dimensional subspaces, the span of the
first N PSWF, %, optimally approximates G.s(T') with
an intrinsic errori5, 6]

1 /\N+1>1—6>0
¢ — -
N

This suggests that we might be able to restrict our recon-
structions to a finite-dimensional subspace of Bs (of dimen-
sion less than p) and still get low error reconstructions.
Thus for a fixed dimension, r, the subspace spanned by
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{#:}i=1 minimizes the worst-case relative error. Moreover
the worst-case relative error E(S?) decreases with r. Thus
it would seem that, given p observations, the best choice of a
lower dimensional subspace to approximate G¢s(I') would
be S¢ = span{¢1,---,ép}. This choice would lead to p
equations in p unknowns. Unfortunately, the p parameters
required to describe the reconstruction from S? cannot be
determined exactly from the observations z4 for two rea-
sons. First, z4 are noise-corrupted in practice. Second, the
observations zq are linearly related to z € G s(I') and not
to the projection z, of z onto S;‘f . Thus, an additional er-
ror will be incurred in determining the parameters that de-
scribe the lower dimensional approximate. We next derive
an expression for this error and its worst-case value =(r)
for a fixed dimension r. We suggest choosing r to minimize

E(S?) + Z(r).

3.2. WORST-CASE ERROR ANALYSIS

Consider the reconstruction based on an r-dimensional ap-
proximation of G¢s(T"), where r < p, and let z, be the pro-

jection of = onto S¢; z, = Z;x a;$; and the approxima-

tion error e, 2 1 — 2, = E:.’;T_H ai¢i. The measurements
zq are linearly related to z and are corrupted by noise nq4:
24 =Tz, + Ter + na = Ara” + (Ter + ng) (6)

where A- is a p x r matrix with A.(3,7) = (¢;,9i), a” =
(al,---a.-)T. The LS solution of Té = za, 2 € S?, is
determined from the MNLS solution of A,&" = z4, which
is R
Thus the recgnstnﬁ:%izgn isagi;r*.ei’;1 rlgf 3‘:’,+=n§::=1 Gl i a@
Cr = Ty — & = ZLI(&{ — o;)¢i is the additional error
incurred in determining the o; parameters. ¢, has contri-
butions from both Te, and measurement noise ng.

Thus, since e, L S? and obviously ¢, € S?, the total
reconstruction error is

Iz = 211" = llo — &7 + 2 = &,1" = Jles I* + liG- 1" (8)
It is clear that, ¥z € Ges(T), Il < E(S;) given by (5).
24 |rT* A JAa] Te |
LEt pr = afnin(Ar) a.l'ld br = H—W‘L' Then,
I6l® < falTer)? + alnal? + 20 AlTe | Al na)

(br + p2n” + 2v/b-p20? Wz ?
E()llell®. (9)
Now all that remains to be done is to obtain a tight upper

T
bound on b, 2 JlilLﬂi over 7 € Ges(T). Mathematically,

N |=f{l2
our objective is to find:
o0
1Y aalTg?

i=r+1

e IA A

(10)

sup

?o a?=1
i=1 !

Yoo, ad1-Age
This is a nonlinear infinite programming problem, and in
general we can only seek approximate solutions. We first
show in Theorem 3.1 that under mild assumptions the above
problem can be approximated by a finite variable nonlinear
programming problem. We then apply well known tech-
niques to solve this problem.

Theorem 3.1 Let ¥ > 0 and |[z}] = 1. There exists a
positive integer N independent of the choice of z € G, 5(T)
such that
o~ ooat
lalTe |~ 11 3 avalrs < v. (11)

t=r41
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Furthermore,
jalTe)

el

N
1Y acalTo

i=r+1

sup
IGGe,G (r)

1+ sup

2
at=1
i=r ¢

z',:l a?(l—k.-):e
(1%

Theorem 3.1 serves to show that the solution to the infinite
programming problem in (10) can be approximated closely
by a sufficiently large finite variable problem. A popular
method for solving this nonlinearly constrained quadratic
program is the Sequential Quadratic Programming method,
[7, 8]. Thus a bound on the worst-case normalized error,
©(r), can be obtained by the sum of the intrinsic error and
a bound on the worst-case ||¢-])%, i.e.,
O(r) = min(1, E(S3) + =(r)). (13)

Thus, to ascertain whether a resolution of § can be
achieved given a set of p measurements we first compute the
bound on the worst-case normalized error bounds for each
dimension r ranging from 1 through p using the PSWF and
the associated eigenvalues corresponding to Ps = [SF, %
and determine the dimension r* which gives the minimum
error. If the worst-case error for this dimension is below the
allowable error then we can claim that a resolution of § can
be achieved with the given set of measurements and noise
level.
Remarks:

1. As a consequence of the above analysis we have a
new algorithm for signal recovery based on dimen-
sion reduction guided by the bound on the worst-case

reconstruction error.

. The worst-case error-bound given by (13) does not
depend on the data zg. It depends only on the sam-
pling functions, g, the bandwidth, 27, the sample
spacing, 7, the noise level, , and the cﬂoice of the di-
mension, r. Thus, the selection of the dimension and
the determination of resolution can be made (off-line)
before the measurements are taken.

. Our analysis and definition of resolution are based
on worst-case errors in a deterministic framework.
Therefore, in general the reconstruction error can be
expected to be lower than the predicted value.

. The analysis holds true for all sampling patterns.
Hence g;, the i*" measurement function, does not
have to be a shifted version of a single measurement
function go. The only restriction is that the support
of each g: lies inside the concentration window, I'.

. We have assumed essential timelimitedness and strict
bandlimitedness in our treatment, which can be easily
changed to essential timelimitedness to I' and essen-
tial bandlimitedness to P. The PSWF will still be
the optimal sequences, (9] and all the results will still
hold true, with minor modifications.

. The PSWF have been studied in the classical setting
of 1D signals with lowpass passband and contiguous
concentration intervals. The three relevant properties
of the PSWF, the dimensionality theorem, and thus,
all our results, can be generalized to the more general
setting of mD signals with P and T discontiguous [10].

Example 3.1 (1D setting) Consider reconstruction of 1D
signals that are bandlimited to [~4w,4n] and have at least
99.5% of their energy concentrated in [—2.0,2.0], from 19
measurements taken with shifted unit rectangular pulses
of width -;— and inter-pulse distance % Thus 6, T, and ¢



are }j, [—2.0,2.0] and 0.005 respectively in the definition of
Ge,s(T), while p and 7 are 19 and 1.

Note that the width of the sampling pulses is % = 26.
Thus the Rayleigh resolution limit is 26. Let the error tol-
erance be 10%. We will show that, depending on the SNR,
a resolution limit of ¥ = $ can be achieved using the algo-
rithm based on the worst-case error analysis.

The terms E(S?), br, p- and ©(r) are computed for each
dimension r for which E(S?) < 1 and tabulated below.

r | E(SP) b, noise-factor O(r)
pr SNR=40dB

13 | 0.2203 0.1905 4.3953 0.4511
14 | 0.0379 0.0430 5.4552 0.1065
15 | 0.0100 0.0189 7.0128 0.0531
16 | 0.0046 0.0338 9.4899 0.0823
17 | 0.0034 0.0788 13.2808 0.1744
18 | 0.0032 0.1103 17.6118 0.2615
19 | 0.0031 0.1124 27.8416 0.3797

From the table we observe that, with a 40dB SNR, the
optimal dimension for this signal recovery problem is 15,
and the worst-case normalized error is bounded above by
0.0531. In fact, with a 10% error allowance, a resolution of
at least 7 = 0.25 can be achieved by the above algorithm
whenever SNR is greater than 32dB. All these computations
can be done off-line since they do not depend on the actual
observed data.

We now test the reconstruction algorithm using the op-
timal dimension determined above on a specific signal:

2 .
_ [ sin(0.47t) sin(0.17t)
z(t) = ( 0. dnt ) +0.2 oint cos(3.57t)

A plot of the signal is shown in Figure 2. The highest fre-
quency in z(t) is 3.6 radians. Notice that z(¢) is a low
frequency signal with a low energy high frequency ripple.
The frequencies are selected such that the low frequency
component falls below the Rayleigh limit and hence is cap-
tured by the observations whereas the high frequency ripple
i3 much above the Rayleigh limit and hence is not seen in
the observations. A high resolution reconstruction should
resolve the high frequency ripple also. z(t) has 99.69 % of
its energy inside the concentration interval [—2.0,2.0], i.e.,
€ = 0.0031. Thus it belongs to the set G. (") considered in
this example. We take 19 observations in the concentration
window with shifted versions of the sampling function. The
observations are shown in Figure 2. Notice that the high
frequency ripple is completely lost in the observations. The
reconstruction, %, is computed using the algorithm with an
optimal dimension of 15 determined by the worst-case er-
ror analysis. The normalized error for this reconstruction,
(12=21)? 'is computed to be 0.0068, which is much below

=1l
the worst-case error bound of 0.0531.

4. CONCLUSIONS

A resolution analysis for signal recovery from finitely many
discrete, noise-corrupted, linear measurements is presented.
A new measure for resolution is introduced, which is more
appropriate than the Rayleigh resolution limit for current
signal recovery algorithms. This resolution measure is based
on a prescribed tolerance of relative error in the reconstruc-
tion, and unlike previous definitions is able to bring out the
extent to which time or spatial domain features can be re-
covered by an algorithm. The computation of resolution

0.8 *

0.4

3

-2 2 a3 4

(b)
Figure 2: Reconstruction of the test signal using the optimal
dimension determined by the worst-case error analysis. The
SNR is 40db. (a) + Observations (b) signal, z(t);
------ reconstruction, £(t).

limits reduces to the computation of the worst-case rela-
tive error in the recovered signal. By suitably constrain-
ing the class of feasible signals, the worst-case error is ex-
pressed as the solution of a finite-variable nonlinear pro-
gram. The analysis and example show that details finer
than the Rayleigh resolution limit can be recovered by sim-
ple linear processing even in practical situations with finite,
noise-corrupted data. In the process, we derive an algo-
rithm for high resolution reconstruction (from linear obser-
vations) and show how one can precompute worst-case error
bounds and the resolution limit for the algorithm.
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