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ABSTRACT

We study the problem of interpolating a bandlimited sig-
nal from its nonuniform samples. We consider a class of
interpolation algorithms that includes the least-squares op-
timal interpolator proposed by J. L. Yen, and we derive a
closed-form expression of the interpolation error for inter-
polators of this type. The expression for the interpolation
error shows that the error depends on the eigenvalue distri-
bution of a matrix, which is specified by the set of sampling
points. We notice that the usual sinc-kernel interpolator
is an approximation to the Yen interpolator, and we sug-
gest a method of choosing the weighting coefficients in the
sinc-kernel interpolator. The new sinc-kernel interpolator
is superior to the sinc interpolator with the usual Jacobian
(area) weighting and is far easier to implement than the
Yen interpolator.

1. INTRODUCTION

The problem of signal reconstruction from nonuniformly
sampled data can be found in various contexts, such as
in the design of irregularly-spaced antenna arrays and the
reconstruction of signals for cases with missing samples.
Generalizing to two dimensions, interpolation from non-
Cartesian data grids is an important problem arising in
various Fourier imaging problems, such as tomography, syn-
thetic aperture radar, and radio astronomy.

In most signal processing applications, the original sig-
nal to be reconstructed from nonuniform samples is mod-
eled as bandlimited. Many types of interpolation algorithms
have been devised for the reconstruction of bandlimited sig-
nals from nonuniform samples. Among the available algo-
rithms, the sinc kernel figures prominently. A commonly
used interpolation formula using the sinc kernel is

L
zo(t) =) biz(t:)sinc(o(t - £:)), (1)

i=1

where the b;’s are chosen to be the sample spacings (Jaco-
bian) around the nonuniform sample locations ¢;. But, this
algorithm is not optimal in any usual sense. An optimal
(in the least-squares sense) bandlimited interpolation algo-
rithm was first derived by Yen [1]. The computation in the
Yen interpolator involves the inversion of an L x L matrix
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where L is the number of samples. When L is large, the
matrix often becomes highly ill-conditioned, so that regu-
larization must be used to reduce the numerical errors in
inversion. The regularization results in smoothing of the
signal spectrum at high frequencies [2]. Although Yen in-
terpolation is best in theory, there are extreme problems in
computing the interpolated values numerically, which pre-
vent realization of the expected performance. Hence, the
Yen interpolator is of rather modest use in practice.

The Yen interpolation algorithm has been derived us-
ing several different approaches {3, 4, 5]. In [3], the algo-
rithm was derived by assuming data matching at the sample
points and finding the minimum norm solution. The same
algorithm was also derived in this paper by optimization in
the frequency domain, using a linear time-varying system
model. In [4], the algorithm was derived by the so-called
optimal recovery approach. Although it is not clear in [4],
the linearity assumption was necessary to show that the
unique, optimal algorithm is the pseudo inverse of the sam-
pling operator. Otherwise, all linear varieties of the pseudo
inverse can be optimal. In [5], the algorithm was derived by
minimizing the least-squares error assuming a special form
of the interpolation algorithm. The minimax optimality
criterion used in [5] can be shown to be equivalent to that
defined in [4]. However, it can be shown that the optimality
criterion used in both of these papers is inadequate for mea-
suring the performance of interpolation algorithms. In [6],
the optimal recovery approach was used with the explicit
assumption that the optimal algorithm is linear.

In this paper, we develop an approximate form of the
Yen interpolator, which is easier to implement than the Yen
interpolator, and less sensitive to noise. In our approach, we
first give a measure of interpolator performance and then
define the optimal interpolator to be that which minimizes
the worst-case error. It is shown that the Yen interpolator
is optimal when there is no restriction on the form of the
interpolator. The work in this paper differs from the pre-
vious work in that we do not assume either data matching
or linearity of the optimal interpolator for the derivation of
the algorithm. Furthermore, we show that the optimality
criterion stated in [4] and [5] is not useful, and we suggest
a new optimality criterion. Our derivation of the optimal
interpolator is based on this new definition of minimax op-
timality. Then, we seek an interpolator having a restricted
form, which can be computed more easily and stably. The
optimal choice of the parameters in the approximate in-
terpolator is given by clustering the eigenvalues of a ma-
trix product, around 1. We suggest a simple method that
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achieves this clustering, and we quantify the performance
of this scheme through numerical simulation.

2. PROBLEM STATEMENT

Consider the problem of interpolation of a bandlimited sig-
nal r from its nonuniformly spaced samples, using an al-
gorithm A. Let S : X — Y be the sampling operator,
where X is the domain and Y is the range, respectively.
In our discussion, X is the set of all signals bandlimited
to |w| < o, and Y = R%. We define the sampling opera-
tor Sz = {z(t1), --,z(tL)} ; ti distinct. The interpolation
error can be defined as

lle — ASz|], (2)

where || - || is an appropriate norm. If X is a Hilbert space
and R(S), the range space of 3, is closed in Y, X admits
the orthogonal decomposition

X =N(S)aNL(S), (3)

where A/(S) is the null space of S and N*(S) is its or-
thogonal complement. Any r € X can be decomposed as
follows in a unique way: z = rn + 5, where zn € N(S)
and rs € N*(9S).

In the previous literature [4, 5], the minimax optimal
interpolator Agp: has been defined to be the one satisfying

inf sup ||z — ASz|| = sup ||z — AopeSz||, (4)
A€A z€X, r€X,

where A is the class of algorithms under consideration, and

X, is the subset of X having elements with unit energy.

If the null space of S, N(S), is empty, then the sampling

operator is invertible, so that

inf — ASz||=0. 5
Jnf, sup lle — ASe] (5)

If N(S) # 0, let A(0) = 2™ for each A € A. We can write
z% = 28 + 22, where 253 € N(S) and z§ € N1(S). For
the signal = = —=#/||z4]l € N(S) N X, Jls — ASz|f =
1+ f|]z#|]* > 1. So, we have

. =0 ifN(S)=0
,‘{IelfA ,seu)l?l llz — ASz| { > 1 otherwise (6)
Choosing ASz=0 for all z€X; would give

inf sea sup,¢x, [|z—ASz|| = 1. Any useful algorithm should
be better than this trivial algorithm. In the minimax sense,
a reasonable algorithm should satisfy sup ¢ x, |z~ ASz|| =
1 if N(S) # 0 (in which case z* = 0 or A(0) = 0.) This
implies the optimality criterion defined by (4) is not useful
for measuring the performance of interpolation algorithms,
because the minimax error is completely specified by S and
is independent of A for reasonable A.

In this section, we slightly modify the definition of min-
imax optimality, to provide a useful measure of the perfor-
mance of interpolation algorithms. The optimal algorithm
Aope should satisfy

inf sup llzs — ASzs|| =
ACA s eNL(S)nX,
sup  |los — AopeSzs]) (7)

zsENL(S)NX,

where, comparing with (4), we have restricted the domain of
the supremum to A'*(S)N X;. The analysis below justifies
this modification to the error criterion.

Since S is linear,

ASz = A(Szn + Szs) = ASzs. (8)

Write ASzs = yn +ys where yy € N(S) and ys € N*(S).
Then, we have

Iz~ ASz|> = |z~ + 25— ASzs|?

How = ynl® +llzs —ysl®.  (9)

Since the interpolation error depends on the energy of the
original signal, we restrict the signals to have a fixed energy
E, without loss of generality. s can be exactly recovered
from the available samples, since S is invertible when re-
stricted to A'*(S). Let £ = Sz. Then zs can be found
using the minimum-norm inverse of S as

rs = S5*(SS*) g, (10)

where S* is the adjoint operator of S. It will be shown in
the next section that the energy of a signal lying in A'*(S)
can be expressed in terms of its samples, and the energy of
zs is given by

les|® =z"@ g, (11)
where @ is the matrix whose (i, )** element is sinc(o(t; —
t;)). Since z is assumed to have energy FE, the energy of
zn is constrained to be

lzxll* = E~lzsl* = E~z" 97"z (12)

Since we do not have any other information on zy, zn§ can
be any signal in A(S) with the energy given by (12). To
minimize the worst-case value of (9), we note that we must
set ys = rs, and we choose yn so that

sup Nzw — ynl| (13)
lenl?=E-zT & 'z

is minimized. This is achieved by setting yy = 0, since zn
lies in a balanced set. This choice of ys and yx corresponds
to the interpolator proposed by Yen [1], and later studied
by others [3, 4, 5]. Given samples of z(t) at t1,---,tr, the
interpolated signal is given by

L L
W) =3 Ymn(ta)sinc(o(t — tm)),  (14)

m=1n=1

where Ymn is the (m, n)** element of the inverse of the ma-
trix ®.

An interpolation algorithm can be thought of as a method
of finding an estimate of 5. So, the performance of an in-
terpolation algorithm must be measured by its ability to
estimate zs in N'*(S). The definition of Ao in (7) follows
from this consideration. In (7) we assumed zs has unit
energy without loss of generality.
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3. ANALYSIS OF INTERPOLATION
ERROR

Given a bandlimited signal z(t), consider an interpolator of
the form

L L
sL(t) =Y D bmn(ta)sinc(a(t — tm)).  (15)

m=1n=1

The {bmna} are parameters of the interpolator, to be cho-
sen. We assume that the {bmn} are symmetric, because
a symmetric choice includes the Yen interpolator, and the
analysis of the interpolation error simplifies. The follow-
ing analysis can be modified, however, for an asymmetric
choice of {bmn}. The choice of {bmn} corresponding to the
Yen interpolator has been proven optimal in the sense of
many optimality measures [4, 6]. But, as noted in previ-
ous literature, the exact evaluation of the optimal {bmn}
suffers from numerical ill-conditioning, especially when the
data are noisy and the number of sample points is large
{2]. Thus, in practice, we are forced to use non-optimal
values for the {bmn}. In this section, we derive a formula
for the interpolation error as a function of the {bmn} and
show how to select these parameters in a suboptimal, but
well-conditioned manner that can still produce small inter-
polation error.

We begin by finding an expression for the error between
the original signal = and the reconstructed signal z . Define
the inner product between two o-bandlimited signals f(t)
and g(t) as follows:

(ﬁm=2¢/mfmmﬂm. (16)

The norm induced by this inner product is || f]| = \/(f, f)-
With simple algebra, it can be shown that

llz — 20| = 2: 2: (Zi)e(Zips,  (17)
where o
pi; = 20'/ #i(t)g;(t)dt (18)
and '
or(t)=sinc(o(t — g—k))
L L
—Z Z bnsinc(o(tn — gk))sinc(a(t —tm)).(19)

The interpolation error depends on the signal to be inter-
polated and the weighting coefficients bmn, m = 1,---,L,
n=1,-.-,L. Hence, when the signal to be interpolated is
unknown, the interpolation error is also unknown. We shall
measure the performance of the interpolator using the opti-
mality criterion described in (7). An explicit expression for
the interpolation error is obtained by expressing the p;j’s

(b — Zi))sine(o(Z5 = tm))

Z ZZmen bpgsinc(o(tn — ;i))

m=1n=l p=1 ¢=1

-sinc(o(tqy — ;J))sinc(a(tm —tp)). (20)

Substituting (20) into (17), and letting z = [z(¢1) - - z(tL)]
B = [bi;}, and ® = [sinc(o(ti — t;))], gives an expression
for the interpolation error in matrix notation:

|z —zc])? =1 -2 (2B — B&B)z. (21)

We now proceed to find £ € N'1(S) N X; giving the worst-
case interpolation error. For z € N'*(S), the energy of z
can be written as

nZmeMthn

m=1n=1

ll=II”

= 7o 7!z (22)
Since £ € Nt 1 X; has unit energy, we have
zTd g =1. (23)

Hence, the worst-case error occurs at the solution of the
following constrained maximization problem:

1-z" (2B - B®B)z,

gT@—lg= 1.

maximize
subject to

This constrained optimization problem can be solved using
the Lagrange multiplier method. At the solution of the
problem, there exists a A such that

—(B®B -2B)z + @ 'z = 0. (24)
Multiplying by ® and rearranging terms, we obtain
(2B — (®B)* — M)z = 0. (25)

This implies A is an eigenvalue of the matrix 208 — (<I>B)2,
and z is the eigenvector corresponding to that eigenvalue.
Thus, the interpolation error can be written as:

lz—zf =1-2"(2B-B®B)z=1- A (26)

The worst-case error occurs when z is the eigenvector corre-
sponding to the minimum eigenvalue of 2&B — (®B)?, giv-
ing the worst-case error v/1 — Amin. 1o minimize the worst
case error, we must choose B so that Amin is maximized.
This is achieved by clustering the eigenvalues of ® B around
1. The best case is when B = ®*, which corresponds to
the Yen interpolator.

4. A NEW INTERPOLATOR

The interpolator in (1) falls within the category of inter-
polators considered above, by setting bmn = 0, m # n in
(15). This choice of bmn corresponds to using a diagonal
matrix for B. This choice for B seems to be intuitively rea-
sonable since the interpolated value at a particular point
should depend heavily on samples near to that point, and
less on samples far from it.
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In view of the optimality criterion derived above, the op-
timal B for an interpolator of this form is a diagonal matrix
which minimizes ||®B—I||s, where ||-||s is the spectral norm
of the matrix. Since minimization of the spectral norm is
not easy, we explore using the Frobenius norm instead, to
measure the closeness of ®B to /. Although minimization
of the Frobenius norm does not guarantee the minimum
value of the spectral norm, it will provide an approximate
solution to the problem. The minimum of ||®B — I, is
achieved when B is of the form

B = diag(bi,---,bL)
L —1
b = I:Z sinc’(o(t; — t,')):| . (27)

We conducted a simulation to demonstrate the perfor-
mance of this new, suboptimal interpolator. We compared
the result with the sinc-kernel interpolator with Jacobian
weighting. For this simulation, a set of L = 16 samples
was used with average sampling interval T =1 s, giving a
nominal bandwidth & = = rad/sec. For sample point dis-
tributions that were nearly uniform, we observed that the
performance of the newly designed interpolator was sim-
ilar to the interpolator with Jacobian weighting. Figure
1 shows the worst-case error for 100 randomly generated
typical nonuniform sample point sets. The solid line rep-
resents the worst case error of the Jacobian-weighted in-
terpolator and the dotted line represents the error for the
newly designed interpolator. We notice that the interpola-
tor proposed in this paper renders smaller worst-case error
than the usual Jacobian-weighted interpolator. We notice
that, in most cases, the Jacobian-weighted interpolator has
worst-case error larger than the signal energy.

A second simulation compared the performances of the
Yen interpolator without regularization (Yen-1), Yen with
regularization (¢ = 107°, Yen-2), sinc interpolator with Ja-
cobian weighting (Sinc-1), and sinc interpolator with weight-
ings given by (27) (Sinc-2). The interpolator input was
taken to be a sampled version of the superposition of 50
sinc functions having cutoff frequency o = r rad/s, having
random amplitudes on the range [0,1], and randomly cen-
tered on the interval [LT,2LT]. L = 16 was used in the
simulation. Gaussian white noise was added to the signal
samples. For each interpolator, a uniformly-sampled ver-
sion of the output signal with sampling interval 7/16 was
reconstructed as an approximation of the continuous-time
signal. To evaluate the reconstruction quality of the four
interpolators, the signal-to-error (S/E) ratio was computed
in dB. The S/E ratio was computed as the energy of the
signal divided by the energy of the reconstruction error.
The means and standard deviations of the S/E ratio, aver-
aged over 100 trials (with different sampling instants and
different signals), are reported in Table 1.

It is seen that the performance of the unregularized Yen
interpolator drops abruptly as the noise level increases. For
the regularized Yen interpolator, the performance is inferior
to the unregularized one when there is no noise, but superior
when there is noise. The two sinc-kernel interpolators are
even less sensitive to noise. And, compared to the usual
Jacobian weighted sinc-kernel interpolator, the interpolator
proposed in this paper performed better for each SNR.

2.8 T T Y —T T T

2.6 4

24} .

worst case error

o.ao 1I0 2‘0 :;o 4‘0 5‘0 60 7'0 8l0 90 100
sample point set
Figure 1: Worst-case interpolation error
Interpolation SNR of data samples
Method no noise | 40dB [ 30 dB | 20 dB
Yen-1 | Mean 10.91 | -27.95 | -40.41 | -42.90
S. D. 4.78 | 22.95 | 23.06 { 23.01
Yen-2 | Mean 9.99 -8.24 | -17.37 | -25.52
S. D. 4.69 7.15 7.14 7.82
Sinc-1 | Mean 2.22 2.30 0.22 -5.12
S. D. 2.00 2.41 2.12 2.34
Sinc-2 | Mean 4.51 4.35 3.40 -1.31
S. D. 2.11 2.45 1.80 1.48

Table 1: Mean and standard deviation of S/E for different
interpolators
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