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ABSTRACT

We address the problem of approximating the quanti-
zation noise spectra when a Gauss-Markov process is
input to a sigma-delta modulator. The process is mod-
eled using a state space approach. Fine quantization
approximations are used to derive expressions for the
output spectrum. Results similar to those of Gray’s (1]
analysis are obtained.

1. INTRODUCTION

Sigma-delta modulation has long been a preferred mod-
ulation scheme for oversampled analog to digital con-
verters. The advantages of the system lie in the inher-
ent tradeoffs between the resolution of the quantizers
and the oversampling rate, robustness under input vari-
ations, and better spectral characterstics than those of
delta modulation systems. In this paper we present
an approximate, but simple, analysis of a sigma-delta
modulation system which covers a large class of random
and deterministic inputs. Our analysis is very general
and gives results, despite being a simple and an ap-
proximate analysis, which are consistent with previous
more rigorous analyses [1, 2, 3, 4, 5].

In [1, 2] Gray et al. have done an extensive analysis
of the quantization noise spectra for the same inputs.
In these analyses the quantizers are assumed to be uni-
form and it is assumed that the quantizers do not over-
load. By restricting the input to the no-overload region
the quantizer error is periodic and it is expanded as a
Fourier series. After intensive analysis, involving Bessel
functions, Gray [1] shows that the quantization noise
spectra is not white. For a DC input the spectrum
is purely discrete, with the locations and amplitudes
of the spectrum heavily dependent on the input signal.
For a sinusoidal input, the output spectra is not contin-
uous or white. In [6] Candy and Benjamin had reached
a similar conclusion for DC inputs by using a slightly
simpler analysis.

Both Gray et al. and Candy et al. restrict their
analysis to either a DC or a sinusoidal input. With the
exceptions of Chou and Gray [3], Wong and Gray [4]
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and, more recently, Galton [5], almost all the analyses
of sigma-delta modulation systems are limited to de-
terministic inputs. In [4] Wong and Gray considered
the input to the single loop sigma-delta modulator to
be an independent and identically distributed (i.i.d)
Gaussian process which is unbounded in magnitude.
By using a continuous time model and doing a rigor-
ous analysis they found a closed form expression for the
quantization noise spectra when the input is a constant
signal overriden by a Gaussian noise. It was shown that
the quantization noise spectra is smeared into bands in
contrast to the discrete line spectrum in the DC case.
Recently, Galton [5] has given a rigorous analysis for
the case when the input to the sigma-delta modulator
is a sequence consisting of a desired input plus an ad-
ditive independent and identically distributed random
component. Explicit expressions for the autocorrela-
tion of quantization noise are also derived.

In this paper we develop an approximate theory to
analyze the quantization noise spectra of a sigma-delta
modulator when the input is a Gauss-Markov process
of any arbitrary order. The approximations that we use
are meant for an optimum quantizer with large num-
ber of levels and in that sense are different from the
analysis of Gray et al. and Galton. An advantage of
our approach is that the input is a Gauss-Markov pro-
cess with any arbitrary rational spectra. Furthermore,
in the limit as the bandwidth of a narrowband process
goes to zero, we approach the sinusoidal input consid-
ered in [1, 2]. Finally, following the paradigm of the
analysis of [7] and [8], we compare the time averaged
smoothed error for sigma-delta modulation with that of
other previously analyzed source coding schemes. We
show that the performance of the sigma-delta modu-
lation system is worse in terms of the smoothed error
than those of the state quantization schemes and the
differential quantization of state.

2. SIGMA DELTA MODULATION

We consider the case when a sampled Gauss-Markov
process T, is input to a sigma-delta modulator. For
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an n-th order Gauss-Markov process, the discrete time
state equation is given by

aS, + FWn-l-la (1)

where W, ;1 is a vector of independent, zero mean,
unit variance Gaussian random variables. £, = CS, 41,
where Sp,41 is the sampled state vector of the Gauss-
Markov process [7]. Here C =1 0 0)7, Tis
a transformation matrix, and o = e“4”, where A is the
state space matrix and 7 is the sampling interval.

“Figure 1 gives the block diagram of a sigma-delta
modulation system. The sigma-delta modulation loop
gives the following equation :

CS,,._1 + (un—l - Q(uﬂ—l))’

Sn+1

(2)

where u, is the state of the sigma-delta modulator.
Finally, the decoder is given by &, = q(un).

We are eventually interested in finding the quan-
tization noise spectra. For this, we first find the au-
tocorrelation of the quantization error. This is given
by

Ry[l}

Un

E(un — q(un))(tn—i = ¢(un-1))
E(uns1 = CSn)(n—i141 — CSn_iy1)” (3)

where we have used equation (2) in getting (3). Here
(un — q(un)) is the quantization of the state of the
sigma-delta modulator at the n-th time instance. The
quantization noise spectra is given by the taking the
Fourier transform of this autocorrelation R,[{], and is
given by: S,(f) = Y, Rullle=2"/L

We use the same notation as in Gray’s analysis [1].
If we consider a narrowband Gauss-Markov process; in
the limit as the bandwidth of the narrowband process
goes to zero, the narrowband process approaches a si-
nusoidal input with a constant amplitude and a statis-
tically independent phase. Gray’s analysis is restricted
to DC or sinusoidal inputs as opposed to our analysis
which holds good for any Gauss-Markov process with
arbitrary rational spectrum. Our analysis is different
from that of Gray’s. We use optimum quantizers as
opposed to the uniform quantizers used by Gray. Al-
though the optimum quantizers can be viewed as a
practical drawback; they also enable us to lift the re-
striction on the no overload. Furthermore, our analysis
can also be extended to uniform quantizers.

We use the difference equation for the sigma-delta
modulator (2) and the input state equation (1) to ob-
tain recursive equations for cross expectations between
S, and u,_;. We use the asymptotic quantization ap-
proximation that for two random variable X and Y,
E{Y(X—¢X)} ~ %:,—E‘{XY}, where N, is the num-
ber of levels in the quantizer and K is a constant de-
pending on the probability density of the random vari-
able X; for example K, = 2.71 when X is a zero mean,
unit variance Gaussian random process.

882

After solving the difference equations recursively
and under the assumption that the number of levels in
the quantizer Ny is large, it can be shown [9] that the
autocorrelation of the quantization noise in the sigma-
delta modulation can be approximated by :

mil~{

The quantization noise spectra S, (f) is given by :

ExzCalR,,(0)CT  1>0

: 4
ECCRL(0)e"T'CT 1<0. “)

—0c0
e—i2mfl +2Ru[1]e—j2wﬂ _ Ru[O]

Se(f) = ZRum
=0 =0
~ N:zcﬂ(f)ﬂ(f)*cT, (5)

where H(f) = (I — ce~i2)" A AA* = [R,,(0) —
aR,,(0)a"], Rss(0) is the covariance matrix of the state
S», and o = e47. Equation (5) is a general expres-
sion for the quantization noise spectra when a Gauss-
Markov process characterized by the state space matri-
ces A, B, and C is input to a sigma-delta modulator.

2.1. A Second Order Narrowband Example

After having derived a general expression for the quan-
tization noise spectra for a Gauss-Markov input, we
consider, as an example, a second order narrowband
process. The second order narrowband process is given
byA:[O 1 andB:k[l

—wn? —2wn Wn
fixed wy,, as  decreases the bandwidth of the spectrum
becomes narrower.

We present the case when w, = 0.4542, { = 10~°
and 7 = 1.0. The frequency w, = 0.4542 is the same as
that of the sinusoidal input considered as an example
by Gray [1]. Under our set of assumptions the quan-
tization noise spectra follows the input spectra. The
difference between the two spectra is more or less con-
stant or white. Figure 2 shows the different spectra.
This is the case when the input is a narrowband Gauss-
Markov process with unit variance. Similar observation
was made by Wong and Gray [4] for independent and
identically distributed (i.i.d) Gaussian inputs. They
showed that as the input variance of the i.i.d Gaussian
sequence increases, the quantization noise spectra has
primarily just one peak and the presence of harmonics
diminshes.

Figure 3 shows the results of simulations for auto-
correlation of the quantization noise. The simulations
are done with a uniform quantizer whereas the theoreti-
cal results correspond to our analysis, which is based on
optimum quantizers. As the dynamic range of the uni-
form quantizer increases, the autocorrelation decreases.
But again, for a fixed number of levels, if the dynamic
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range becomes too large, the autocorrelation of quan- the performance of the sigma-delta modulation system
tizer shows a sinusoidal-like behavior. This case corre- with other envelope quantization schemes with respect
sponds to Gray’s [1] result of quantization noise spectra to the smoothed error.

for a sinusoidal inputs with a binary quantizer in the
sigma-delta modulator. Gray observes several lines in

the spectra for a binary quantizer. These correspond ACknOWledgementS

to a mixture of sinusoids in the autocorrelation. In our
simulations, if we let the dynamic range of our uniform
quantizer become large, the quantizer behaves practi-
cally as a binary quantizer. Thus our autocorrelation
does approach that obtained by Gray for a sinusoidal
input to a sigma-delta modulator with a binary uniform
quantizer. We should note, however, that our input is
not exactly a sinusoid but a very narrowband Gauss- (1]
Markov process with peak at the same frequency as the

sinusoid considered by Gray.

2
3. SIGMA-DELTA MODULATION 2

PERFORMANCE IN TERMS OF
SMOOTHED ERROR

In this section we compare the performance of the sigma-
delta modulation system with some other source cod- (3]
ing systems. In [7, 8] we analyzed the performance of
many source coding systems by tracking and quantiz-
ing the state vector S(t). The state vector is sampled
and its quantized version is used to find an estimate of
the state. For a fixed digital channel transmission rate [4]
R, we consider the problem of minimizing the overall
mean square error averaged over one sampling interval.
By doing our analysis in the paradigm of [7, 8, 9], we
can compare the performance of this sigma-delta mod- (5]
ulation system with other source coding schemes. We
have analyzed the performance of several quantization
schemes for a narrowband input random process. Fig-
ure 4 gives the relative performance of these schemes
with respect to the sigma-delta modulation system for [6]
the second order example considered in the previous
section. The smoothed error for sigma-delta modula-
tion is the largest among all the schemes.

4. CONCLUSION AND DISCUSSION 7]

In this paper we have analyzed a sigma-delta modu-
lation system, with a Gauss-Markov input, using fine
quantization techniques. This analysis is different from (8]
most analyses in literature since it assumes optimum
as opposed to uniform quantizers used traditionally.
Although difficult in implementation, the use of op-
timum quantizer assumption removes the requirement
that the input lie in the no overload region. Further- [9]
more, the approximations that we derive are very gen-
eral and hold good for any Gauss-Markov input hav-
ing any arbitrary rational spectrum; unlike many of
the previous analyses [1, 6] which are restricted to ei-
ther DC or a sinusoidal inputs. Finally, we compare
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Figure 1: A Sigma-Delta Modulation System.
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Figure 2: Quantization Noise Spectra for narrowband input
at wn = 0.4542, ¢ =107° and at r = 1.0. The quantization
noise spectra follows the input spectra.
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Figure 3: Autocorrelation of the quantization noise in
sigma-delta modulator. The figure shows the simulations
versus the theoretical results for the case when the input to
sigma-delta modulator is a narrowband Gauss-Markov pro-
cess with w, = 0.4542, ¢ = 10~° and at sampling interval
r = 0.01. The number of levels in the quantizer are 32.
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Figure 4: A companson of performance of Sigma-Delta
modulation system with scalar quantization of the enve-
lope for the second order narrowband process considered
with ¢ = 0.001 and w, = 10. The figure plots 10log, %:‘—,
where (sm, is the smoothed error for Sigma-Delta modula-
tion at 20 bits per second. The four curves are (from top to
bottom) : i) Differential State Quantization, ii) Differential
Quantization of the Complex State, iii) Scalar Quantization
of the complex envelope, and iv) Sigma-Delta Modulation.
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