CLASSIFICATION AND CLUSTERING OF STOP CONSONANTS VIA
NONPARAMETRIC TRANSFORMATIONS AND WAVELETS

Basilis Gidas

Division of Applied Mathematics
Brown University
Providence, RI 02912

ABSTRACT

We propose a new algorithmic method for the classi-
fication and clustering of the English six stop conso-
nants /p, t, k, b, d, g/, on the basis of CV (Consonant-
Vowel) or VC syllables data. The method explores
two powerful tools: (1) a wavelet representation of the
acoustic signal and its induced “waveletogram”, a time
domain analogue of the spectrogram; (2) nonparamet-
ric transformations of the “waveletogram” and a non-
linear discriminant analysis based on these transforma-
tions. The procedure has yielded better rates of cor-
rect classification than previous methods. Moreover, it
yields interesting two-dimensional clustering plots for
stop consonants as well as for vowels. The clustering
plots for vowels are as separating as those based on the
first and second formants; we know of no other method
in the literature that yields clustering plots for conso-
nants.

1. INTRODUCTION

The Hidden Markov Models (HMM) approach, one of
the most flexible and versatile frameworks, to speech
recognition combines two basic models: the acoustic
model and the language model. The approach has been
highly successful in isolated-word speaker-dependent
limited-vocabulary tasks. Recent systems have ad-
dressed these restrictions with various degrees of suc-
cess, but there remain fundamental difficulties in deal-
ing with more “natural” speech. In the view of some
researchers (including ourselves), current implementa-
tions of HMM have at least two weaknesses: (a) one
at the “low-level”, i.e. how the data interact with the
phoneme models (as well as the nature of the phoneme
models); (b) and one at the “high-level”, i.e. the use
of artificial grammars.
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In [1, 2] we introduce a framework based on mod-
ern nonparametric techniques for estimation and pre-
diction, to deal with the “low-level” difficulties. The
procedure is a time domain approach and leads to a
new acoustic model, i.e. to a new type of phoneme
models and a new relation between these models and
the acoustic data.

The framework is motivated by both the acknowl-
edgement that the acoustic signal contains non-station-
ary and nonlinear segments, and the fact that non-
linearities contain information that is important for
recognition. Most speech recognizers, including HMM,
assume that short time segments are stationary and
linear. Hence, they are analyzed via Fourier Trans-
form (FT) methods and linear models (such as Linear
Predictive Coding, LPC). These procedures are ade-
quate in some parts of the signal (e.g. steady state of
vowels), but not in others: non-stationarities in transi-
tion regions make FT questionable; and linear models
cannot capture useful information contained in nonlin-
earities.

In order to isolate the effects of non-stationarities
and nonlinearities from other effects of the signal, we
consider the problem of classifying (recognizing) the
six stop consonants /p, t, k, b, d, g/ and vowels on
the basis of CV or VC syllables. The problem has
the additional advantage of not requiring a language
model, and hence it is a good case for testing low-level
procedures. In addition to being directly relevant to
speech recognition, this problem has important impli-
cations [3] in phonetic theories, theories of perception,
developmental psychology and auditory physiology.

The stop consonants problem has been studied with
a variety of methods [4, 5, 6, 7], including neural net-
works [4, 8]. Its central difficulty lies in the non-sta-
tionary and nonlinear structure of the signal in the
transition and burst regions. Our handling of these ef-
fects explores two powerful tools: (1) a wavelet repre-
sentation of the acoustic signal and its induced “wave-
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letogram”, a time domain analogue of the spectrogram,;
and (2) nonparametric transformations of the wavelet-
ogram, and a nonlinear discriminant analysis based on
these transformations.

Our procedure has yielded (see Section 4) better
correct classification rates than previous methods [4,
5, 8] for stop consonants and vowels. Further, previ-
ous methods have focused primarily in the discrimi-
nation within voiced /b, d, g/ or unvoiced /p, t, k/
stop consonants only. Qur numerical results are in
complete agreement with psychophysical experiments
[9, pp. 190-191], which indicate that adults and in-
fants discriminate correctly the three voiced stop con-
sonants and the vowels when listening to about 100
ms of speech. An important additional aspect of our
procedure is that it yields interesting two-dimensional
clustering plots for vowels as well as for stop conso-
nants. The clustering plots for vowels are comparable
to those based on the first and second formants. The
clustering plots for consonants separate the stop con-
sonants into clusters according to the two phonetic fea-
tures that differentiate them: the place of articulation
and the phonetic feature voicing, which is usually char-
acterized by a single parameter known as Voice Onset
Time or VOT.

Next, we describe the basic components of our clas-
sification procedure, which will be described in Section
3. Section 4 reports the results of two experiments de-
signed to test the effect of multiple speakers and dif-
ferent vowel environments in the classification of stop
consonants based on our procedure.

2. THE CLASSIFICATION ALGORITHM

2.1. The Wavelet Representation and the Wave-
letogram

Let X = {X; : t = 0,1,...,2Y — 1} be the sam-
pled speech signal in the time domain. Finite Discrete
Wavelet Transforms (FDWT) are indexed by two inte-
gers R (2R + 1 is the support width) and jp (low reso-
lution cut-off); and are either “periodic” or “boundary
adjusted” [10, 11]. For a periodic FDWT, X is repre-
sented by ’

N-127-1
X = Z_1’0W_1,0(t) + Z Z Zj.kVVj,k(t) (1)

i=0 k=0

where Z_10, Zjx :j=0,...,N—=1, k=0,...,2 —
1, are the wavelet coefficients of X. The basis ele-
ments W; ;(t) are related to Daubechies’ compactly
supported wavelets [10]. For jo < j << N, 0 <<
k << 27, W;(t) is concentrated at scale 2/ and lo-

cation t = k2V~J. For other properties of Wj i (t) see
(10, 11].

The “waveletogram” corresponding to (1) is simply
the plot of {|Z; x|} in the (4, k)-plane. After properly
smoothing the waveletogram, we extract a small num-
ber of parameters Z = (Z1, Z2, ..., ZT); in our exper-
iments T = 21. These are the parameters (data) used
in our classification and clustering algorithm.

2.2. Nonparametric Transformations

Let M be the number of units to be classified (for the
stop consonants M = 6). We construct: (1) a sequence
of parameters A; > Ay > -+~ > Apr_1 > Ay = 0, with
A1 < 1, (2) a matrix of constants

gn(m), m=1,....M, n=1,...,M -1

and (3) a matrix of nonlinear functions
fin(Z), i=1,...,T, n=1,...,. M- 1.

These are solutions of an eigenvalue problem [1, 12]
whose formulation involves a smoothing procedure. In
our experiments we used the well-known super-smooth-
er. Our classification and clustering {1, 13] are based
on

T
En(Z) = VA/(1- /\n)Zfi,n(Zi)
Ca(m) = 1/(1 = Ap)gn(m), m=1,....M

forn=1,...,M - 1.

2.3. Classification and Clustering Plots
Let

M-1
D(Zim) = Y [Ca(m) — En(2)]

The classification rule is: given Z = (Z4,...,27),
choosem € {1,2,..., M} so that it minimizes D(Z; m).

From the point of view of this classification rule, the
high-dimensional vector Z € IRT has been replaced by
the low-dimensional vector

(Ei(Z), E2(2),...,Em—1(Z)) e RM™Y  (2)

Thus, the space RM~! may be interpreted as the hy-
potheses space (or class space) in which the vector

(C1(m), Co(m), ..., Cy—1(m)) € RM~!

determines the center of hypothesis m, and vector (2)
for various realizations of Z (from the conditional prob-
ability P(Z|m)), defines the “cloud” or “scatterplot”
of hypothesis m.
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The map that to Z corresponds vector (2) may be
viewed as a nonlinear dimensionality reduction map.
The success of clustering depends, naturally, on how
well the hypotheses (i.e. their scatterplots) are sep-
arated in the hypotheses space R¥~!. In addition,
separation of hypotheses should also be “visible” in
lower-dimensional subspaces of RM~1,

In principle, one could use Projection Pursuit {or
some other dimensionality reduction algorithm) to find
“optimal” directions and subspaces in R®~!. We have
not explored this possibility, but we have investigated
clustering properties in subspaces defined by choosing
a subset of the coordinates of vector (2). More pre-
cisely, let r < M — 1, and fix ny) < ny < -+ < n,,
where ny,...,n, € {1,..., M — 1}. The subspace

(Enl(Z)’ L -;En,(Z)) € Rr

may be viewed as an r-dimensional hypotheses space.
The center of hypothesis m in this space is then

(Cﬂl(m): sy Cnr(m)) eR

For r = 2, the two-dimensional clustering plots are
the scatterplots in the (E,, En/), n’ # n, planes. Typ-
ically, the (E1, E;)-plane provides the best separation.

In our experiments of Section 4 we obtain interesi- .

ing clusterings of the stop consonants into voiced and
voiceless, and into labial, alvevlar and velar conso-
nants.

3. CLASSIFICATION OF SPEECH SOUNDS

In this section we describe how the above nonlinear
classification rule is applied to speech signals.

We divide the acoustic signal in L consecutive over-
lapping frames £ = {1,2,...,L}. In each frame £ € £

we extract T relevant variables Z(8) = (th), . Zg)),
£=1,...,L, as explained in Subsection 2.1. The entire
signal is then replaced by Z = {Z(‘) d=1,..., L} .In
every frame £ € £, the functions
{s0m):m=1,...M, n=1,... M =1,
{#9¢):i= LT n=1,..,M-1},

are estimated and used to form the nonlinear discrim-

tnant measure
DO(ZO;m) = D(Z®;m)

For a total number L of frames, we employ the
overall discriminant measure

Z D(l)(z(l) m). (3)

=1

Dp(Z;m) =

The classification ruie is then: given Z = {2(9 :
€=1,...,L}, choose the hypothesis m that maximizes
(3). If more than one hypothesis attains the minimum,
then choose randomly among the competing hypothe-
ses, with equal probability.

4. EXPERIMENTS

We describe two experiments using two speech data
sets. The first experiment was designed to test the
effect of multiple speakers {three female ant two male
speakers) in the classification of the six stop consonants
in a fixed vowel environment. The second experiment
was designed to test the effect of different vowel con-
texts (five vowels) in the classification of stop conso-
nants within a single (male) speaker.

4.1. Experiment 1

We used 395 CV tokens (uttered by 3 female and 2
male speakers) of the six stop consonants /p, t, k, b,
d, g/ followed by the vowel /a/. 252 CV tokens were
used for training, and 143 for testing. The average

‘correct classification rate was over 96% when 50 to 60

ms of the acoustic signal (from the beginning of the
burst) were used. This time scales are consistent with
the empirical values of the VOT. The number of tokens
per speaker were unequal; in fact, two speakers had a
small number of tokens. In this sense, the result is
nearly speaker independent.

4.2. Experiment 2

In this experiment, we used 424 CV tokens (uttered
by one male speaker) of the six stop consonants /p,
t, k, b, d, g/ followed by the vowels /a, e, i, o, u/,
i.e. a total of 30 CV categories. 282 CV tokens were
used for training, and 144 for testing. The average
correct classification rate for stop consonants was over
93% when more than 60 ms of the acoustic signal were
used, and over 95% when 90 to 120 ms were used (the
maximum time considered in our experiments was 220
ms from the beginning of the burst). For the vowels,
the average correct classification rate improves steadily
with the total number L of frames considered in the
algorithm, achieving average error rates less than 1%
when 200 ms of the speech signal were used. The trade-
off to obtain good classification rates for both the stop
consonants and the vowels appears to be when 190 to
216 ms of the acoustic signal were used, with average
correct syllable classification rate over 94%.
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4.3. Clustering

We have used the clustering functions E,(-) defined
in Section 2 to construct two-dimensional clustering
plots for the vowels as well as for the stop consonants.
The clustering of the five vowels /a, e, i, 0, u/ in the
two-dimensional vowel space (E1, E2) is very reminis-
cent of the clustering plots of vowels [9, p. 178] based
on the first and second formants. This indicates a
close relation between the first two clustering functions
E., E,, and the first two formants. The clustering of
the six stop consonants /p, t, k, b, d, g/ in the two-
dimensional consonant space (E, E3) shows simulta-
neously a separation between the voiced stop conso-
nants /b, d, g/ and voiceless stop consonants /p, t,
k/, and a division among the labial consonants /p, b/,
alveolar consonants /t, d/ and velar consonants /k,
g/, i.e. a division according to place of articulation.
In this sense, the first two functions Ey, E3, represent
acoustic correlates corresponding to the phonetic fea-
tures voicing and place of articulation. We have not
found in the literature any other acoustic functions di-
rectly derivable from the acoustic signal that may be
used to obtain two-dimensional clustering plots for the
stop consonants.
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