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ABSTRACT

This paper presents a new method for automatic generation of
speaker-dependent phonological rules in order to decrease recog-
nition errors caused by pronunciation variability. The proposed
method generates phonological rules by using objective speaker’s
continuous speech and corresponding standard pronunciation, re-
sulting in forming a multiple-pronunciation dictionary from a
single-pronunciation dictionary. The method makes it possible to
generate automatically speaker-dependent and recognizer-
dependent phonological rules, and be applied to both a top-down
recognizer and a bottom-up recognizer, while conventional meth-
ods are based on hand-derived general phonological rules such as
coarticulation knowledge or are applied only to a bottom-up
recognizer. Phrase recognition experiments with concatenated
phoneme HMMs showed that the generated rules can decrease rec-
ognition errors and play a role of speaker adaptation at the phono-
logical level.

1. INTRODUCTION

Pronunciation variability of words is a major problem in automatic
speech recognition. Local acoustic variation in a phoneme is
solved by a statistical acoustic model such as an HMM, but pho-
neme variation of pronunciation should be solved by a linguistic
approach. In our application of Japanese speech recognition, a
caption-superimposing system for TV programs[1], we designed a
pronunciation dictionary with expected multiple entries for a word
by hand. For example, a Japanese phrase "hatakikomide" is some-
times uttered as "hatakkomide" or "hatakikonde.” The registration
of multiple entries is troublesome because the pronunciation vari-
ability is dependent on speakers in almost cases.

Several researches to cope with the pronunciation variability
have been reported. Methods based on linguistically heuristic
knowledge or hand-derived general phonological rules such as co-
articulation knowledge have led to performance improvement
[21(3][4]. They have difficulties, however, to generate speaker-
dependent and recognizer-dependent phonological rules, because
the general phonological rules do not consider the speaking habit
with each speaker. There is an automatic method by mappings be-
tween baseform pronunciations and hand-transcribed pronuncia-
tions 5], but it is troublesome to transcribe the actual pronuncia-
tions for a new speaker by hand. Methods to create pronunciation
networks [5]{6] require a large data set in order to obtain proba-
bilities embedded in the networks. Another method is to correct
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phonetic recognition results by pre-examined phonetic recognition
errors [7]. Though the method can generate speaker-dependent
phonological rules, they are applied only to a bottom-up recogniz-
er such as a segment-based phonetic recognizer and not applied to
a top-down recognizer such as concatenated phoneme HMMs ac-
cording to phonetic transcriptions of words or sentences.

To cope with the pronunciation variability without the prob-
lems of the conventional methods, we present here a new method
to generate phonological rules. The proposed method generates
phonological rules from unsuited phonetic symbols for objective
speaker’s continuous speech whose contents are independent of
recognition tasks, and then it forms a multiple-pronunciation dic-
tionary from a single-pronunciation dictionary. The method makes
it possible to generate automatically speaker-dependent and
recognizer-dependent phonological rules without giving hand-
transcribed actual pronunciations. The method is applicable to
both a top-down recognizer and a bottom-up recognizer.

2. GENERATION OF PHONOLOGICAL RULES

This section describes how to generate phonological rules auto-
matically in the proposed method for a top-down recognizer. The
rules are generated from three types of data: objective speaker’s
continuous speeches {S¢) specially uttered for the rule generation,
phonetic symbol sequences {P;} of standard pronunciation corre-
sponding to {Sk}, and speaker-independent phoneme HMMs (Y},
as shown in Fig. 1. Though the contents of {S;} are not fixed, a
phonetically balanced set is desired. In advance, the HMMs are
trained by any training method such as a maximum likelihood es-
timation with phoneme data derived from a large number of
speakers’ speech. For each phoneme m, the average likelihood L,,
and duration (the average y m, the standard deviaton ¢ n, and the
minimum length 7 ,,) are stored after the HMM training. The Vit-
erbi algorithm is applied to the continuous speech S; with concat-
enated HMMs according to the standard pronunciation Py, in order
to obtain the total likelihood L(SklPy), the phoneme likelihood L%;,
and the length I"; for the i-th phoneme X",- in Pg. In the Viterbi al-
gorithm, the existence of pauses between every phrase in the
sentence speech Sy is judged by using the pause HMM inserted
between every phrase. From the detected phonemes with lower
likelihood, shorter lengths, or longer lengths than the waining pho-
neme data, tentative phonological rules are generated. If a new
phonetic symbol sequence P;’ by the generated phonological rule
improves the likelihood and the discriminative ability of {Si}, the
rule is accepted as one of the final phonological rules.
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Fig. 1 Flow of the proposed method.

In the case of the application to a bottom-up recognizer, the
likelihood under the standard pronunciation is calculated by a
segment-based phonetic recognizer instead of the Viterbi algo-
rithm, and unsuited phonetic symbols are detected in order to
generate the tentative phonological rules. The other procedures are
same as the method for the top-down recognizer.

2.1. Generation of Tentative Rules

We consider the four types of phonological rules from a bi-

phone/triphone to a biphone/triphone:

(i) Deletion rules: ABC—~AC (deleting phoneme B),

(ii) Substitution-1 rules: ABC—ADC (substituting phoneme B
with phoneme D),

(iii) Substitution-2 rules: ABC—DC (substituting biphone AB
with phoneme D),

(@iv) Insertion rules; AB—ACB (inserting phoneme C).

Tentative phonological rules for (i)-(iv) are generated from all

phonemes in {P;} as described below.

2.1.1.Deletion Rules

When a phoneme in a continuous speech is not uttered actually,
there is a very fair possibility that the HMM for the expected pho-
neme shows shorter duration or lower likelihood by the Viterbi
segmentation than those in the phoneme HMM training, as shown
in Fig. 2. Therefore such an unsuited phonetic symbol is detected
in order to generate a deletion rule. If i-th phoneme X*;in Py is the
phoneme m and one of the three conditions:

P pt 2 0y < T gy Ll 1
is satisfied, let P,’ be a new phonetic symbol sequence without the
phoneme X",-. If the likelihood L(SkIP:’) by the concatenated
HMM s according to P, satisfies the inequality:

L(SdPr) < L(SelPe),
let X* . X*X*,1—X*.1X*, be a tentative deletion rule.

@

2.1.2. Substitution-1 rules

When a phoneme substitution occurs in an utterance, there is a
very fair possibility that the HMM for the expected phoneme
shows short duration or low likelihood by the Viterbi segmentation.
Such an unsuited phonetic symbol is detected by the Viterbi algo-
rithm in order to generate a substitution-1 rule. IfX".- in P is the
phoneme m and one of the inequalities (1) is satisfied, another

phoneme is substituted in turn for the phoneme X*; in order to de-
cide Xp,» which shows the highest likelihood for the speech S;.
When the inequality (2) is satisfied by a new sequence P;’ where
X,..., is substituted for Xk 5 let Xk i.]Xk ,X";,,l—’X" ;_,X,.,,,X* +1 De a ten-
tative substitution-1 rule.

2.1.3. Substitution-2 Rule

When another phoneme is uttered instead of two consecutive
phonemes in standard pronunciation, there is a very fair possibility
that the HMMs for the consecutive phonemes show short duration
or low likelihood by the Viterbi segmentation. If the sum of the
duration for phoneme Xt i1 and X",» in P; or the sum of their likeli-
hood is considered to be inferior to those in the phoneme HMM
training, based on the similar inequalities as (1), another phoneme
is substituted in turn for the phonemes X*.1X* in order to decide
X .ew Which shows the highest likelihood for the speech S;. When
the inequality (2) is satisfied by a new sequence P’ where Xy, is
substituted for X";_lX";, let X";.IX*,-X",-H—'X,WX*,-H be a tentative
substitution-2 rule.

2.14. Insertion Rules

When a continuous speech is uttered with any phoneme insert-
ed between two phonemes in standard pronunciation, there is a
very fair possibility that the HMMs for the two phonemes show

continuous speech for rule generation)

phonetic symbol uence
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a,r,ayurny-
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phonetic symbols
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phonetic symbols
Fig. 2 Evaluation of phonemes.
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long duration or low likelihood by the Viterbi segmentation. If the
sum of the duration for phoneme x* .1 and X",- in Py or the sum of
their likelihood is considered to be inferior to those in the phoneme
HMM training, based on the similar inequalities as (1), another
phoneme is inserted in turn between the phonemes X*.1X% in order
to decide X,,,, which shows the highest likelihood for the speech
St. When the inequality (2) is satisfied by a new sequence P}’
where X, 1s inserted between X";.IX";, let X"i.lX";—*X",qX,.,wX"i be
a tentative insertion rule.

2.2, Check on Rules

To select really effective rules, the generated tentative phono-
logical rules are checked on, because the each tentative rule is
generated by examining the effect on only one sentence in the con-
tinuous speeches {S;}. Improvement of likelihood and discrimi-
native ability by the tentative rules are examined on all the
continuous speeches {S).

2.2.1. Improvement of Likelihood

For each tentative phonological rule, phonetic symbol sequenc-
es of standard pronunciation including the left side of the rule are
selected from {P;}. The rule is applied to the selected sequences to
obtain the average likelihood of the corresponding continuous
speeches in {S;}. If the average likelihood is lower than the likeli-
hood without the phonological rule, the rule is deleted from the set
of the tentative rules. If it is higher, the difference is stored as an
effective value of the phonological rule. The values are used when
forming a multi-pronunciation dictionary.

22.2. Improvement of Discriminative Ability

To examine the improvement of discriminative ability by the
tentative rules, the speeches {S;} are divided into phrases at pauses
by the Viterbi algorithm. The likelihood of the phrases is calculat-
ed by concatenated phoneme HMMs according to rule-applied
multiple pronunciations of the phrases. If a phonological rule in-
creases the difference of the likelihood between correct phrases
and the nearest wrong phrases on average for all the phrases, the
rule is accepted as one of the final phonological rules.

3. MULTIPLE-PRONUNCIATION DICTIONARY

The automatically generated phonological rules are applied to a
single-pronunciation dictionary in order to obtain a multiple-
pronunciation dictionary. For example, when the insertion rule
"k,a—k,w,a" or the substitution-1 rule "i,g,a—iky,a" is applied to
the single-pronunciation "s,e.k,a,i,g,a", the pronunciations
"s.e,k,w,a,i,g,a" or "s,ek,a,iky,a" are added to the multiple-
pronunciation dictionary. For a word or a phrase in the single-
pronunciation dictionary, the multiple-pronunciation dictionary
adopts n sequences showing high effective values of likelihood
among generated sequences by the phonological rules, where n is
the number of phonemes in each word or phrase in the single-
pronunciation dictionary. In the recognition experiments described
below, we used the average likelihood for each pronunciation en-
try of phonetic symbol sequences, without weighting them.

4. RECOGNITION EXPERIMENTS

Recognition experiments on phrase speeches or Japanese "bunset-
su" speeches were performed by the proposed method. Discrete
HMMs with three types of output symbols (LPC cepstral coeffi-
cients, differenced LPC cepstral coefficients, and differenced
logarithmic power) were used for 41 Japanese phonemes. They
were left-to-right models with two states for vowels and pauses,
and four states for consonants. Training of the phoneme HMMs
and the design of codebooks were carried out with lots of labeled
phoneme data in the ATR Japanese database [8] by 15 male speak-
ers to obtain speaker-independent acoustic models. Generation of
the phonological rules was carried out with 50 phonetically bal-
anced sentences (A-set) by a male speaker in the continuous
speech database by the Acoustical Sociéty of Japan (ASJ). Pho-
netic symbol sequences of standard pronunciation corresponding
to the A-set sentences were transcribed by hand, independent of
actual pronunciations. The test data were approximately 140
phrases extracted from the same speaker’s 25 sentences whose
contents were different from the data for the rule generation. The
single-pronunciation dictionary for the test data consisted of pho-
netic symbol sequences of standard pronunciation corresponding
only to the test phrases. A multiple-pronunciation dictionary was
formed from the single-pronunciation dictionary by the generated
phonological rules by the A-set sentences. The recognition was
carried out by selecting the phrase showing the highest likelihood
among the phrases in the dictionaries, with no grammar like word
recognition.

The recognition experiments were performed for five speakers.
In the five speakers’ experiments, the common data set was used
for the rule generation, but different data sets were used as the
speech data to be recognized. Table 1 shows examples of the gen-
erated phonological rules for speaker can0001 in the ASJ database.
In the case, 1026 tentative rules were extracted from the 50 sen-
tences, and the number was finally reduced to 599 by the check on
the rules. Table 2 shows examples of entries in the multiple-
pronunciation dictionaries. Fig. 3 shows the results of recognition
rates with the single-pronunciation dictionaries or the multiple-
pronunciation dictionaries for every speaker. The multiple-

Table 1 Examples of generated phonological rules.

type of rules {number | examples ggfgg&:ﬂ’:gd
deletion 105 | sh,it—sht 7.0
substitution-1| 240 | te,i—t,ii,i 25.7
substitution-2 78 | uhe—rye 229
insertion 176 | a,0—a,w,0 9.3
(speaker: can0001)
Table 2 Examples of multiple pronunciations.
s || R | Bbhr
;%%lgﬁciaﬁon syevkyavivgya kravgvi’rya’rye’[:a
) sekaiga | kagirareta
multiple- I sekaigual kaugirareta
pronunciation | s.ek aiky,a | kagiryreta
s.ekraigal kagibreta

(speaker: can0001)
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Fig. 3 Phrase recognition rates.

pronunciation dictionaries raised recognition rates by 2.4% on
average and 3.9% at maximum from the rates by the single-
pronunciation dictionaries. The muitiple-pronunciation dictionar-
ies gave good performance especially for the speakers showing
relatively lower recognition rates by the single-pronunciation
dictionaries. Fig. 4 shows examples of the likelihood for a phrase
which was mis-recognized by the single-pronunciation dictionary
but correctly recognized by the multiple-pronunciation dictionary.
The figure makes it clear that the pronunciation entries giving
higher likelihood than standard pronunciations were added to the
multiple-pronunciation dictionaries. It is considered that these re-
sults show the effectiveness of the multiple-pronunciation dictio-
naries based on the automatically generated phonological rules.

We performed another experiment after speaker adaptation of
the codebooks and the HMMs instead of speaker-independent
models. They are adapted in a discriminative way [1][9] with the
continuous speech for the rule generation and their standard pro-
nunciations regardless of the pronunciation variability. The
generated phonological rules improved recognition rates by 1.3%
on average, though the effect was lower than the experiments
without the adaptation of the codebooks and the HMMs. The rea-
son is considered that the pronunciation variability was embedded
in the acoustic models to some extent, in spite of the adaptation
under wrong labels of phonetic symbols.

correct phrase
k,o.n,0,u.e,.na,i
k,n,0,u,e,n,u,a,i f
k,0,n,0,u,e,b,n,a,i f
k,o,n,w,0,1,€,n,a,i
k,o,n,0,ue,n,e,a,i
average N

2nd in single dic.

B 1st in multiple dic.

nearest wrong phrase
d,o,y,00,b,i,w,a
d,0,y,w,00,b,i,w,a
d,0,y,00,b,ii,i,w,a
d,0,y,00,b,p,i,w,a
d,0,y,00,b,t,i,w,a
d,0,y,00,b,i,w,aa,a
d,0,y,00,b,i,w,w,a
average 2nd in multiple dic.
-14.4 -14.2 -140  -138
log-likelihood (speaker: can0001)

1st in single dic.

Fig. 4 Examples of effective multiple pronunciations.

5. CONCLUDING REMARKS

In this paper, we have presented a new method for automatic gen-
eration of speaker-dependent phonological rules in order to
decrease recognition errors caused by pronunciation variability
dependent on speakers. In the recognition experiments by the
multiple-pronunciation dictionaries based on the phonological
rules generated from 50 sentences, the phrase recognition errors
have decreased by 2.4% on average and 3.9% at the maximum.
The multiple-pronunciation dictionaries gave good performance
especially for the speakers showing relatively lower recognition
rates by the single-pronunciation dictionaries. The result suggests
that the proposed method can play a role of speaker adaptation at
the phonological level. )

In the proposed method, the following should be noted. Since
the phonological rules are generated from the objective speaker’s
continuous speech specially uttered for the rule generation, any
rules are not generated from a biphone/triphone which does not
exist in the continuous speech. Data sets of the continuous speech
should be appropriately designed to cover objective speakers’
pronunciation variability and apply the phonological rules to any
recognition tasks. Another point to be noted is the design of the
acoustic models. The generated phonological rules have signifi-
cant relation to speaker adaptation and subword units of the
acoustic models. It is intended to examine these points.
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