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ABSTRACT

This paper describes recent advances on the use of
HMM based technology, for speaker independent continu-
ous speech recognition, in noisy environment, under hands
free interaction mode.

For this purpose an array of four ominidirectional micro-
phones is employed as acquisition system. The processing
of phase information in the Cross-power Spectrum provides
the capability both of locating talker position and of recon-
structing an enhanced speech spectrum.

Here, two enhancement techniques are described, that
allow recognition improvement in the case of clean input
speech as well as under different adverse conditions. Results
refer to the use of a new multichannel corpus, collected in
real environment by microphone array as well as close-talk
microphone.

1. INTRODUCTION

The ability of speech recognition systems to deal with diver-
sified environmental conditions, speaker interaction modes,
and acquisition channels is still far to be achieved.

When there is mismatch in training and testing condi-
tions, system performance falls down drastically. Some-
times, the main reason is environmental noise, that is
present in the speech signal; a related one is the concurrent
interaction mode adopted by the speaker, that can vary
considerably from laboratory to “real world” [1].

Retraining speech recognizers for every new condition is
a time consuming procedure and would not solve the prob-
lem. In this work, we jointly consider two aspects of the
problem: noise adaptation and talker-focused acquisition.
A target scenario is devised including: a) an acquisition
system based on a microphone array able to locate talker
and to reduce influence of undesired environmental compo-
nents, b) a speaker independent continuous speech recog-
nizer trained on clean speech and self-adapting in real-time
to new noisy conditions.

The present version of the detection and location system
is described in {2], while an introduction to the recognition
system and preliminary results about its use in adverse con-
ditions can be found in [3]. A block diagram of the overall
system is given in Figure 1.

Time Delay Compensation (TDC) module performs
talker location and source beamforming using only four mi-
crophones. Improved performance is expected by using a

0-7803-2431-5/95 $4.00 © 1995 |EEE

more sophisticated acquisition system with a larger num-
ber of sensors in order to achieve better spatial selectivity
in sound pick-up.

In the remainder of the paper, two spectrum enhance-
ment techniques are described, that derive from those intro-
duced in [3]. Recognition results refer to experiments on a
new multichannel corpus, collected in an office under differ-
ent noisy conditions, using both the array and a close-talk
microphone.
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Figure 1: A block diagram representation of the microphone
array-based recognition system.

2. TIME DELAY COMPENSATION

The use of a microphone array for speech recognition relies
on the possibility of obtaining a signal of improved quality,
compared to the signal acquired by a single microphone,
when operating in adverse conditions such as in noisy and
reverberant environment and with a distant talker.

Let us assume that a talker generates an acoustic event
8(t) that is acquired by microphones 90,.....,(M — 1) as sig-

- nals 30(t),....,sam—1(t). Signals acquired by the acoustic sen-

sors i and k are characterized by the relative delay 8.k of
the direct wavefront arrival.

Time delay estimation is a critical issue in noisy and re-
verberant conditions. In this work we adopted a Crosspow-
erSpectrum Phase (CSP) technique [4] that has been shown
to be effective for acoustic event detection and location [2].



Once each relative delay box of direct wavefront arrival
between microphone 0 and k has been estimated, the sim-
plest technique to reconstruct an enhanced version 3(t) of

“the acoustic message is based on a time delay compensation
{delay and sum beamformer):

M1

() = 2

k=0

sk(t + bok). (1)

The frequency domain counterpart of this operation can
be easily performed exploiting the spectra already derived
in the CSP processing.

3. SPECTRUM ENHANCEMENT

" 3.1. Spectrum Weighting Function

A suitable piecewise linear weighting of the spectrum com-
ponents is effective for spectrum enhancement [3, 5, 6].

Let us indicate S(n, m) as the discrete m-th component
of the power spectrum at n-th time-frame, and S(m) its
average evaluated on the whole utterance. We introduce
the following new non-linearly weighted spectrum:

yaS(m)
L8 (n,m) +1

yaS(m)

Se(n, m) = +7(S(n, m) — aS(m)) (2)

where «a, 8, and v are parameters fixed on empirical basis.
An example of the corresponding weighting function is re-
ported in Figure 2. Following we will refer to this technique
as SWF (Spectrum Weighting Function).
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Figure 2: Ezxample of weighting function, for input values
between 0.0 and 1.0.

3.2. Discriminative Spectrum Weighting Function

Another version of the enhancement technique proposed in
the previous section is described following.

If n-th frame is classified as “noise” (frame non con-
taining speech signal) then: S.(n,m) = 6S(n, m), with
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0 < § < 1. Otherwise, (2) is applied by replacing S(m)
with {Sns(m) + cons(m)], where Sps(m) and on,(m) are
the average and standard deviation of S(n,m) in “noise”
frames of the utterance. Initially, S,,(m) and on,{m) are
evaluated on first ! frames, which are assumed to be always
“noise” (in this work, ! was fixed to 20). Then, the estima-

tion proceeds until a “speech” frame is encountered.

In order to distinguish among “speech” and “noise”
frames, a simple heuristic rule is adopted. Given a frame,
the number of spectrum components is evaluated, for which
S(n,m) > [?n,(m)+can,(m)]: if this number is bigger than
a given threshold Tk, the frame is classified as “speech” oth-
erwise as “noise”. In this work, ¢ was fixed to 3, while Th
was estimated from the first ! frames of the utterance.

Following we will refer to this technique as DSWF (Dis-
criminative Spectrum Weighting Function).

4. RECOGNITION SYSTEM

4.1. Acoustic Processing

Each signal is preemphasized by using a digital filter hav-
ing transfer function H(z) =1 —0.95 x z~!, and then pro-
cessed without any start-end point detection. The signal is
blocked into frames by applying a 20 ms Hamming window
every 10 ms. For each frame, 8 Mel scaled Cepstral Coeffi-
cients (MCCs) are extracted, using a 24-channel filter-bank.
MCCs are normalized by subtracting the MCC means com-
puted on the whole utterance, useful for compensation of
channel transfer function effects [3]. The log-energy is also
computed and normalized with respect to the maximum
value in the sentence. The resulting coefficients and the
normalized log-energy, together with their first and second
order derivatives, computed on windows of 50 ms and 70
ms length respectively, are arranged in a single observation
vector of 27 components.

During test, this acoustic processing is applied either
to the single microphone signal or to the output of TDC
module.

4.2. HMM-based Recognition

A set of 33 Context Independent Units (CIUs) are modeled
by means of Continuous Density HMMs. A left-to-right
topology with three states (without skip among states) is
adopted for all the CIUs with the exception of the “silence”
unit, for which an ergodic topology with a single state is
used. Output distribution probabilities are modeled by
means of mixtures having 16 Gaussian components with
diagonal covariance matrix.

Recognizer training, based on Maximum Likelihood Es-
timation, is accomplished by using the segmentation and
labeling available with the database APASCI described be-
low. During the training phase, less used Gaussians are
pruned. Recognition is performed with the Viterbi algo-
rithm on Finite State Networks, depending on the type of
task.



5. SPEECH DATABASES

5.1. APASCI Corpus

The present release of the italian corpus APASCI 2.0 [7]
includes 3900 phonetically rich utterances (pronounced by
176 speakers), automatically segmented and labeled as de-
scribed in [8]. The whole corpus was divided into a training
set (2140 sentences uttered by 50 males and 50 females), a
development set (900 sentences uttered by 18 males and 18
females), and a test set (660 sentences uttered by 20 males
and 20 females). The speech material was acquired in a
quiet room.

This corpus was collected for the development of a
speaker independent continuous speech recognizer for ital-
ian language whose baseline is described in [7].

5.2. Multichannel Speech Corpus

In order to measure performance discrepancy using speech
material, acquired either with a close-talk microphone or
with a distant microphone array, a new speech corpus was
collected in a real environment, i.e. an office with comput-
ers, air conditioning, etc.. Due to the characteristics of this
room, recordings included reverberation components, and
signals were affected by coherent noise due to secondary
sources (e.g. computers).

CloseTalkMic | ChOMic
Clean 30.1 11.9
Noisel 26.3 6.5
Noise2 21.8 0.2

Table 1: Mean SNR in dB using acquisition channels Clos-
eTalkMic and ChOMic with three different noisy conditions
(namely Clean, Noisel and Noise2).

A multichannel recording of each utterance was pro-
vided by a close-talk cardioid AKG D3700 microphone (fol-
lowing called CloseTalkMic) and a linear microphone array
(following called MicArray) situated in front of the speaker
at 150 cm distance. The array consisted of two distant mi-
crophone pairs: distance between microphones of each pair
was 15 cm, while distance between microphone pairs was
75 cm. Acquisitions were carried out, synchronously for all
the input channels at 24kHz sampling frequency, with 16
bit accuracy. Downsampling to 16kHz was then applied.

Ten sentences were uttered by each of four speakers
(2 males and 2 females) in three different noisy condi-
tions (sentences were different speaker by speaker). For
each condition, the resulting test set consists of 371 words
(2189 phone-like units). The first acquisition session was
performed under normal office conditions, the second and
the third ones were accomplished introducing two levels
of background noise in the office (two loudspeakers re-
produced recordings of real environment noise). Follow-
ing, the mentioned conditions will be called Clean, Noisel
and Noise2. For comparison purposes, a single microphone
(namely ChOMic) of the array will be also considered as
an independent acquisition channel. CloseTalkMic speech
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material was automatically labeled and segmented [8], in
a coherent way with the APASCI notation, and used to
document MicArray material as well.

Table 1 reports mean Signal to Noise Ratios (SNRs) for
different acquisition channels and noisy conditions. SNR
was measured as ratio between speech energy and noise en-
ergy, according to the speech-noise classification provided
by segmentation and labeling.

6. EXPERIMENTS AND RESULTS

6.1. System Performance

Given the multichannel speech material described above,
a set of experiments was carried out, whose performance
is reported in terms of Phone Accuracy (PA) and Word
Recognition Rate (WRR). Phone Accuracy was evaluated
using an unit loop grammar without any phone statistics or
phonotactic constraints. Word Recognition Rate was mea-
sured for two different tasks: Word Pair grammar (WP)
and a Word Loop grammar (WL). For the WP task, an ar-
tificial grammar having perplexity 50 was built (perplexity
is intended as number of successors of a given word in the
grammar). The WL grammar has a single state and a self-
loop per word. In this case, the perplexity is 371 (i.e. the
size of the dictionary).

In Table 2, PA is reported for each acquisition chan-
nel and noisy condition. Results were obtained using both
the baseline system and the above mentioned enhancement
techniques. :

Experimental results, in terms of WRR for the WP task
and the WL task, are reported in Table 3 and 4, respec-
tively. WRR are given only for the Clean test sets.

6.2. Discussion

Results of Table 2 suggest a first comment on the use of
close-talk microphones. Under the most adverse condition
Noise2, performance falls down of 8% PA even using the
best enhancement method. This result can represent a ref-
erence for the other experiments, where distant-talk micro-
phone were employed, and can be probably related mainly
to stressed speech phenomena. In fact, talkers uttered at
a very small distance from the close-talk microphone, but
were influenced by the environmental noise, causing effects
like Lombard speech not considered in the enhancement
technique development. This subject deserves further stud-
ies.

Still looking at Table 2, results show performance im-
provement, due to the use of spectrum enhancement and mi-
crophone array processing, that leads from 27.9% to 42.7%
PA in the case of Clean test set. The corresponding im-
provement from 19.1% to 81.4% WRR (see Table 3) and
from 15.9% to 49.8% WRR (see Table 4), for the WP task
and the WL task, respectively, confirm the joint benefit of
these two methods.

Some small discrepancies in results attained using SWF
and DSWF enhancement techniques can be caused by a
non-optimal choice of parameters (described in Section 3.1),
that were not tuned to the specific acquisition conditions of
each test set.



! Close TalkMic [

MicArray [

ChOMzic

Clean | Notsel | Noise2

Clean

Noisel | Noise2 | Clean | Noisel | Noise2

Baseline | 71.9 67.6 58.1 33.2

27.4 22.8 27.9 24.0 21.2

SWF 69.4 68.7 62.0 37.1

27.7 21.2 30.1 24.1 18.8

DSWF 72.0 69.2 64.1 42.7

35.4 28.1 36.3 31.9 24.7

Table 2: Phone recognition rate in terms of Phone Accurac

y for the baseline system and using the enhancement meth-

ods (namely SWF and DSWF). For each acquisition channel (ramely CloseTalkMic, MicArray and ChOM ic) three noisy

conditions are considered (Clean, Noisel and Noise2).

CloseTalkMic | MicArray | ChOMic
Baseline 97.5 54.9 19.1
SWF 97.5 80.6 50.1
DSWF 98.1 81.4 57.4

Table 3: Word Recognition Rate for the Word Pair task.
Using the baseline system alone and using the enhancement
methods. WRR refers to Clean test for each acquisition
channel (namely CloseTalkMic, MicArray and ChOMic).

CloseTalkMic | MicArray | ChOMic
Baseline 75.7 27.2 15.9
SWF 76.8 47.1 32.8
DSWF. 74.9 49.8 34.7

Table 4: Word Recognition Rate for the Word Loop task.
Using the baseline system alone and using the enhancement
methods. WRR refers to Clean test for each acquisition
channel (namely CloseTalkMic, MicArray and ChOMic).

7. FUTURE WORK

Results given above show that a simple combination of a
microphone array based processing and a HMM based rec-
ognizer, trained under clean conditions, can provide encour-
aging results in a real environment task. We expect signif-
icant improvement further working on each module of the
overall system. In particular, multichannel data collection,
unit model adaptation, and acoustic feature extraction seem
to be issues to address immediately.

Even if multichannel data collection is a time-consuming
activity, it represents a fundamental way to evaluate system
performance in real environment. In order to better assess
the results given above, a new multichannel database is be-
ing planned. A large number of utterances will be collected
with different talker positions, under different noisy condi-
tions, and employing different array geometries.

A second activity, under way, refers to the use of unit
model adaptation. For this purpose, we intend to exploit
segmentation and labeling of close-talk microphone material
to adapt each unit model, separately and by fast techniques.
Some promising results have been recently obtained with
this approach.

Finally, we are investigating the use of a normaliza-
tion module, based on Artificial Neural Network, able to
transform acoustic features obtained from distant-talk mi-
crophone array to those corresponding to close-talk micro-
phone, as suggested by [9].
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