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ABSTRACT

In this paper, we describe a Generalized Dual Excitation
(GDE) speech model that is more accurate in its character-
ization than the Dual Excitation (DE) model [1] in that it
takes into account pitch variations. This model, together
with an analysis window whose length varies adaptively ac-
cording to the changing characteristics of speech, forms the
backbone of a new speech enhancement system. Informal
comparisons of the GDE system with the traditional sys-
tems (2, 3] have shown a clear preference for the former.

1. INTRODUCTION

The development of the DE speech model has led to some
interesting insights into the problem of speech enhancement
[1]. When speech degraded by additive random noise is
decomposed into co-existing voiced and unvoiced compo-
nents, the bulk of the noise energy appears in the unvoiced
component. Since any important harmonic-like structure of
the speech is confined to the voiced component, performing
speech enhancement on the voiced and unvoiced compo-
nents separately, taking advantage of the unique spectral
characteristics of each, reduces degradations such as slur-
ring and tonal artifacts which are commonly associated with
other speech enhancement methods [3, 4].

Our goal in this paper is to improve speech enhance-
ment performance by using a more accurate speech model.
Although the DE model is a more flexible representation of
speech production than the traditional speech model which
requires a hard voiced/unvoiced decision [5, 6], it has diffi-
culty modeling pitch variations. The GDE generalizes the
DE model by taking pitch variations into consideration.
This allows a more complete decomposition of the speech
into voiced and unvoiced components. With the DE model,
traces of leaked harmonic energy are observed in the un-
voiced component, but by permitting small variations in
pitch, this leakage of harmonic energy is reduced.

The extra degrees of freedom in the GDE model help
characterize speech in two important ways. First, they al-
low for some irregularities in the periodicity, which are in-
variably present in voiced sounds since speech production
system is never truly fixed. Second, some small inaccuracies
in the pitch estimate can be compensated for. Overall, by
allowing small variations in the pitch, the harmonics of the
synthesized voiced component match those of the speech
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spectrum more accurately. This effect can be significant for
high-frequency harmonics.

Because speech is non-stationary, conventional analy-
sis has been based on short segments of fixed length, with
the assumption that the model parameters within each seg-
ment are fixed. However, this assumption is inaccurate, as
the speech signal is not a sequence of steady-state sounds
of fixed length which abruptly change from one segment to
the next [7]. An adaptive window to capture varying char-
acteristics of speech would improve the performance of the
conventional model-based enhancement systems [2].

This paper presents two improvements to the DE en-
hancement system: varying the window length according
to changing characteristics of speech and taking pitch vari-
ations into account.

2. GENERALIZED DUAL EXCITATION (GDE)
MODEL

Like the DE model, the GDE model allows voiced and un-
voiced speech to co-exist in speech s(n) as shown:

s(n) = v(n) + u(n). (1)

The voiced component v(n) is modeled by taking pitch vari-
ations into account, and the unvoiced component u(n) is
estimated from the difference d(n) between the speech and
the estimated voiced component #(n).

2.1. Voiced component

Let sy(n) represent the windowed speech segment which
is obtained by applying an analysis window w(n) to the
speech s(n). The estimate, 9,,(n), of the windowed voiced
component vy (n) is obtained by minimizing the following
error criterion:

£ = Z [8w(R) — vw (n)]? (2)
so that
Tw(n) = arg min €. (3)

Equivalently, this criterion can be formulated in the Fourier
domain as:
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Sw(w) = Vi (w)*dw (4)



where A
Vw(w) = arg min £, 5
(w) ng ) (5)

and Vi, (w) and Sw(w) are the Fourier transform of vy, (n)
and s, (n) respectively. The voiced spectrum V,, (w) is mod-
eled as M windowed real harmonics and is given by

M
Vo)= > AmW (w —muwo) (6)

m=—M

where ) -
M= (7)
wo

and W(w), wo and Am are the Fourier transforms of the
window function w(n), the fundamental frequency and the
mth harmonic amplitude’.

Instead of enforcing strict harmonic modulation of the
window function, the GDE model relaxes this condition so
that the modulations of the window are nearly harmonic.
The new estimate of Vi, (w) is given by

M
Vi () = Z KnW(w—(m-wo —0wm))  (8)

m=—M
where
Owm = —0w_m; Owp =0, (9)
and m
{6wm|§C-M-wo 0<C<3. (10)

Equation (8) must satisfy the minimization criteria (3)
and (5). Because of the introduction of the extra M vari-
ables (Owm for m = 1...M), the minimization problem
requires a multivariable grid search. If the bandwidth of
the window function is sufficiently narrow (which is gener-
ally the case if the length of the window is long compared
with the pitch period) or the overlap between the adjacent
modulated window functions is negligible. such that

/" W*(w—(m-wo — 8wm)) - W(w — (k- wo — Owg))dw = 0
N ()

for m # k, then the minimization problem (3) can be
decoupled into M independent problems:

Km,0wm =arg _min &En (12)

Km ,0wm

for m=1... M, where

Em =
L 1S w) = KW (w = (m - wo — Beom)) 2o,
i b
(13)
am = (m+0.5) - wo (14)
bm = (. — 0.5) - wp (15)
and
M
E=2) Em+Eo. (16)
m=1
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Figure 1: (a) Segment of speech waveform (b) Sample
spectrum. Sample spectrum overlayed with synthetic
spectrum (c) without pitch modification and (d) with
pitch modification

Assuming 8w is known (the estimate wp of the funda-
mental frequency wo is obtained using (5) and (6)), the
solution to (12) is given by

_ fb:" Sw(w) - W*(w — (m - G0 — Owm))dw

T PW(w = (m - do — Bwm))| dw

bm

Given (17), solving (12) requires a simple one dimen-
sional search in Owy,. This can be formulated as follows:
Buwm =
2
arg max

W

/ Sw(W)W*(w — (m - &g — Owm))dw
bm

(18)
In order to illustrate the benefits of incorporating pitch

variation in the speech model, a specific example is consid-
ered. In Figure 1(a), 256 samples of female speech sampled

1|-] denotes the smallest integer less than or equal to the
argument
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at 10kHz are displayed. This speech was windowed with
a 256-point Kaiser window with 8 = 6 and a 512 point
FFT was used to calculate 257 samples of the spectrum of
|Sw(w)| shown in Figure 1(b). Figure 1(c) shows the sample
spectrum overlayed with the synthetic spectrum obtained
without the pitch modification. The non-integer pitch pe-

riod estimate is found to be 53.8 samples. Using & = 5%—’.'8

in the above analysis, éwm and f(m are calculated. Fig-
ure 1(d) shows the sample spectrum overlayed with the
synthetic spectrum with pitch modification. The figure
demonstrates that by incorporating pitch variation into the
model, the harmonics are better matched. As stated earlier
and demonstrated in the figure, this can be significant for
high-frequency harmonics.

2.2. Unvoiced component

The estimate of the unvoiced component 4(n) is obtained
from the difference signal d(n) which is given by

d(n) = s(n) — v(n). (19)

From d(n) there are various methods for estimating the
unvoiced component. The general approach is based on
the smoothness of the short-time spectral magnitude of
the unvoiced component, thereby allowing different types
of smoothing operations, e.g., all-pole modeling, to be used
on d(n) in estimating the unvoiced component.

3. ADAPTIVE ANALYSIS WINDOW

There are essentially two reasons for using an adaptive anal-
ysis window. First, it allows a trade-off between noise re-
duction and smoothing. Second, it leads to better estimates
of the model parameters. These are discussed in the follow-
ing section.

3.1. Trade-off between noise reduction and smooth-
ing

Any method for reducing random noise involves averaging
(smoothing) in the time and/or frequency domain. How-
ever, this operation comes at a price; too much smoothing
tends to blur speech characteristics which might be vital
to the intelligibility while insufficient smoothing leaves per-
ceptible noise level unchanged. Therefore, an appropriate
amount of smoothing should be used for different speech
characteristics.

The amount of blurring is proportional to the length
of the analysis window. Therefore, it is essential to apply
an adaptive window whose length traces the time-varying
characteristics of speech. For example, in a transitional re-
gion in which high temporal resolution is required a short
window is necessary to reduce blurring. Conversely, for a
non-transitional region, a longer window should be used for
maximum averaging. It is also determined that the length
of the analysis window should depend on the signal-to-noise
ratio (SNR). Therefore, whereas a long window is appropri-
ate when the SNR of the degraded speech is low, a short
window should be used when the SNR is high. The ra-
tionale behind this is that the higher SNR naturally yields
more reliable estimates of the speech model parameters and
does not require as much noise reduction.
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3.2. Parameter Estimation

Most model-based enhancement methods have been formu-
lated on the premise that the characteristic within each
segment s.,(n) is fixed. However, this assumption can lead
to inaccuracies as speech is not a sequence of steady-state
sounds of fixed-length which abruptly change from one seg-
ment to another. Therefore, it is desirable to window the
speech waveform so that each segment is most accurately
represented by the speech model; in other words, for each
window segment, the model error should be minimized.
This is accomplished by using a variable-length window to
capture the varying characteristic of speech.

In the GDE enhancement system, the voiced component
is estimated before the unvoiced component. The accuracy
of the estimate of the unvoiced component is dependent on
accuracy of the voiced component. Therefore, the overall
performance of the GDE enhancement system hinges on the
accuracy of the voiced parameter estimates.

To estimate the voiced parameters accurately, speech is
segmented according to the changing periodicity of speech;
this allows maximum number of successive periods to be av-
eraged, and the averaging process tends to cancel any noise
which is uncorrelated between pitch periods. The more pe-
riods there are for analysis, the better the estimate of the
voiced component parameters.

Figure 2: a) Degraded waveform of “ool” in the word
“tools” b) Adaptive analysis window for voiced compo-
nent

An example of overlapping analysis windows used to
capture changing periodicity in a speech segment is given.
Figure 2(a) shows the waveform of “ool” in the word “tools”,
uttered by a female speaker, degraded by white Gaussian
noise at an SNR of 10dB. This waveform is segmented ac-
cording to the changing periodicity. Figure 2(b) shows the
overlapping analysis windows used for the voiced compo-
nent analysis. The boundaries of the windows are deter-
mined by the fluctuation of the periodicity of the waveform.
The sharpness of the transitions in speech characteristics
determines the overlap between adjacent windows.

Similarly, for estimating the unvoiced component, the
difference signal d(n) is segmented according to the fluc-
tuation of the sample autocorrelation function. Here the
overlap between adjacent windows is usually greater than
that of voiced component analysis.
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Figure 3: Generalized Dual Excitation Speech Enhancement System

4. SPEECH ENHANCEMENT SYSTEM

The GDE enhancement system is shown in Figure 3. This
system differs from the DE enhancement system in two
ways: the speech model takes pitch variations into consid-
eration, and it uses an adaptive analysis window. Because
the actual speech enhancement technique, once speech is de-
composed into the voice/unvoice components, is identical to
the DE enhancement method, the actual enhancement tech-
nique will not be discussed in this paper. To briefly summa-
rize the DE enhancement method: the voiced component is
enhanced by removing any harmonic amplitudes below the
effective noise level; the unvoiced component is enhanced
using traditional methods such as the all-pole model based
Wiener filtering [2] and spectral subtraction [3].

5. PRELIMINARY RESULTS AND SUMMARY

A speech model which takes pitch variations into account
was presented. This model, together with the adaptive
analysis window, forms the backbone of a new speech en-
hancement system. Informal comparisons of the GDE sys-
tem with the traditional systems {2, 3] have shown a clear
preference for the former.
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