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ABSTRACT

This paper describes a system for the automatic
separation of two-talker co-channel speech. This sys-
temis based on a frame-by-frame speaker separation al-
gorithm that exploits a pitch estimate of the stronger
talker derived from the co-channel signal. The con-
cept underlying this approach is to recover the stronger
talker’s speech by enhancing harmonic frequencies and
formants given a multi-resolution pitch estimate. The
weaker talker’s speech is obtained from the residual
signal created when the harmonics and formants of
the stronger talker are suppressed. A maximum like-
lihood speaker assignment algorithm is used to place
the recovered frames from the target and interfering
talkers in separate channels. The system has been
tested at target-to-interferer ratios (TIRs) from -18 to
18 dB with human listening tests, and with machine-
based tests employing a keyword spotting system on
the Switchboard Corpus for target talkers at 6, 12, and
18 dB TIR.

1. INTRODUCTION

Co-channel speaker separation is employed when speech
from two talkers has been summed into one signal and
it is desirable to recover one or both of the speech sig-
nals from the composite signal.! Co-channel speech
occurs in many commeon situations, such as when two
AM signals containing speech are transmitted on the
same frequency, or when two people are speaking si-
multaneously. The goal of co-channel speaker separa-
tion is to automatically process the co-channel signal
and recover each talker’s original speech. Minimizing
artifacts in the processed speech is a key concern, espe-
cially if the recovered speech is passed to an automatic
speech recognition system.

Efforts to develop algorithms addressing the co-chan-

nel speaker separation problem have spanned two dec-
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ades [1], [2], [3], [4], and [5]. Initial work in co-channel
speaker separation evolved from speech enhancement
algorithms designed for separating voiced speech from
background noise given a pitch estimate from the target
talker

(1], [6]. Beginning with Hanson and Wong’s harmonic
magnitude suppression (HMS) technique [3], co-channel
speaker separation algorithms have attempted to first
estimate the pitch of at least one of the talkers, and
then to exploit the pitch harmonics to separate the two
talkers {2}, [7].

This paper describes a harmonic enhancement and
suppression (HES) based co-channel speaker separa-
tion system. This system uses a maximum likelihood
(ML) pitch detector [8]. It provides an integer esti-
mate of the pitch period of the stronger speech signal
in a 40 ms analysis interval. Based on this initial in-
teger estimate of the pitch period, a multi-resolution
search is conducted to determine a fractional pitch pe-
riod. The fractional pitch period is then used to con-
struct two discrete-time filter pairs in the frequency
domain. These filters are applied to the spectrum of
the co-channel signal, S;(e/*), and used to separate
the stronger and weaker talkers respectively. The re-
covered weaker signal is further processed by suppress-
ing energy at frequencies corresponding to the 3 dB
bandwidth of the stronger talker’s formants. The re-
covered stronger and weaker signals s,[n] and s, [n] are
then assigned to the target (s1[n]) or interfering (s2[n])
talker using a mazimum likelihood speaker assignment
(MLSA) algorithm, and resynthesized using overlap-
add techniques.

2. APPROACH

The goal of this work was to develop a completely au-
tomatic co-channel speaker separation system which
would operate without any a priori information, with a
minimum delay in processing the signal, and would em-
phasize approaches with low computational complexity.
Figure 1 is a block diagram of this system.

This system currently operates on 10 kHz sampled
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Figure 1: A block diagram of the HES co-channel
speaker separation system.

data with a 401-point analysis window and a 10 ms
frame rate. This window length was selected so that
a pitch as low as 50 Hz could be identified. For each
analysis frame, the co-channel signal sy [n] is analyzed
to determine the pitch (fundamental frequency) of the
stronger talker P,. This pitch is used to drive the
Speaker Recovery algorithm, which produces estimates
of the stronger and weaker speech signals within that
window. The recovered weaker signal is analyzed to de-
termine the pitch of the weaker talker P,,. Silence/UV
detection is then performed on this frame.

The MLSA algorithm examines these inputs, and
evaluates the voicing probability resulting from hypoth-
esized assignments in a dynamic programming fash-
ion given the current pitch estimates and the recov-
ered signals from four previous frames. This approach,
which attempts to maximize the coherence of the re-
constructed output signals, proved to be much more re-
liable for speaker assignment than attempting to track
the recovered pitch. This algorithm produces two re-
covered signals, 3;[n] and 32[n], one for the the target
and the other for the interferer. For example, if s, is
the target on the right channel (of a set of headphones),
the MLSA algorithm will attempt to keep the target on
this channel and any interfering talker on the left chan-
nel throughout the transmission.

One advantage of this approach is that it avoids
the need to jointly estimate the pitch of both talkers.
Estimating the pitch of the stronger talker is sufficient
to achieve separation and make an estimate of the pitch
of the weaker talker during subsequent processing. This
approach also facilitates the recovery and tracking of
both talkers as their respective signal strengths and
voicing states change over time.

The Speaker Recovery algorithm operates on each
analysis frame and attempts to recover the speech of
both the stronger and weaker talkers using discrete
time filter pairs based on the pitch estimate of the
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Figure 2: A block diagram of the HES Speaker recovery
system.

stronger talker. The strategy behind this algorithm
is to recover the stronger talker by enhancing their
formants and pitch harmonics. The recovered weaker
talker is the residual signal obtained by suppressing the
stronger talker’s pitch harmonics and formants. Fig-
ure 2 is a block diagram which shows the steps in the
Speaker Recovery algorithm.

One of the drawbacks of discrete-time filters is that
they are extremely dependent upon an accurate esti-
mate of p,. We found that an integer estimate of the
pitch period was inadequate, because the estimates of
the pitch harmonics were off by more than one DFT
bin at higher frequencies. Therefore, a high-resolution
fractional pitch estimate was formulated to ensure that
the location of higher-order harmonics was accurate to
within one DFT bin. The fractional pitch period es-
timate is given by p, + iT, and the transfer functions
that were eventually implemented are:

(14 az=@*m) /3, (1)
(1 — az_(};u""'r))(l —_— az(ﬁl+if))‘

Hylz) =
H_[2] =

The factor a = .99 was introduced to avoid H4[z] =0
at z = ¢/F2*F+_ The variable a was used in the same
manner in H_[z] to dither the magnitude of the zeros
at the pitch harmonics.

Our implementation uses the time-shift property of
an M-point DFT in which

z(n—r1) paiks X[k]e‘l%h',
and 7 is the time delay expressed in fractional samples.
To use this property to delay a real signal by non-
integer samples, it is important to correctly implement
the wrap-around due to the periodicity of the DFT in
the range 0 < £ < M — 1. This can be accomplished
for an even value of M by multiplying X [k] by

eI ¥k for 0 <k< %,
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In our high-resolution pitch estimate, the value of
T varies as a function of the estimated pitch period p,.
Given the true fundamental wy = £ for some h, we
want to estimate wg such that the difference between
the ht? harmonics of wo and the estimate’s fundamental
@g is less than one-half bin of an M-point DFT:
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Letting 7 = 1 — § and p = 1+ 57 implies

logn < log&p — logwg < logp. (4)

To ensure this accuracy when searching in the neigh-
borhood of the stronger talker’s pitch derived from the
integer pitch estimate, B,, it is necessary to specify a
candidate grid ¢ so that the optimal fractional pitch

Reriod, Ps = Ps + it can be determined. For a given

P,, i is determined from
logP, = logP, + i(logu — logn). (5)

For large values of M, logn =~ -—ﬁ and logy = ﬁ:

. ~ 2
logP, = logP,+ 7
P, ~ %P,
27 . T
PT, = ps=e ﬁps (6)

For small values of % (ie., < .01), e~ W (1- &)

hoa(1-2)p, for —R<i<R (7)
M

For r = %, this is equivalent to p, = p, + ir. Thus

our multi-resolution estimate has 7 proportional to p,

and in our experiments we have selected R = 4.

The optimal fractional pitch period is determined
by minimizing the energy passed by a zero-phase dis-
crete-time notch filter N[z]. This notch filter is a func-
tion of it and extends one pitch period to the left and
right of the current pitch period as follows:

Niz] = (1 — az=®+7))(1 - azPHT) = H_[2]. (8)

The notch filter is evaluated at z = e to determine
NT[k] and is multiplied by S,,[k] in the frequency do-
main. Sp[k] is the Fourier transform of the current

N-point window starting at time sample m, which in-
cludes data points from a previous and past pitch pe-
riod. Sy, [k] is defined as the M-point FFT of the signal:

sm[n] = s4[m],..s:[m+ N + [p, +i7]],0,0,0,
ey S [m = [B, +i7]], ..., 84 [m —1].

The last [P, + i7] points of the M-point FFT contain
samples from the previous pitch period.

The product Sp,[k]N[k] is computed for —R < i <
R as:

Silk] = Sm[k](1 — ae = HEEHT) (] _ gl FEEHIT)
(9)
in which the computation of S;[k] adheres to the wrap-
around rule given in Equation 2 for 0 < k < M. S;[k]
can then be inverse transformed to obtain s;[k], and
the norm of the first N = 401 points can be computed.
The value of ¢ that minimizes the norm is selected.

3. TESTING

The HES algorithm was subjected to several types of
tests: keyword spotting (KWS) tests on linearly added
speech signals, listening tests on linearly added speech
signals, and listening tests using speech transmitted
over RF channels. For the RF experiments, transmit-
ters were connected to antennas on top of our building
which were transmitting AM speech signals on the same
frequency to a receiving antenna approximately 50 me-
ters away. Only the results on the keyword spotting
tests are presented here; see [9] for more extensive test
results.

Three standard speech databases were used for test-
ing the HES algorithm: the Switchboard Credit Card
corpus, the MIT-CBG database [10], and the TIMIT
database. The MIT-CBG and TIMIT databases are
two “read speech” databases which were selected be-
cause they are phonetically labeled, enabling us to de-
termine performance as a function of three voicing states:
voiced, unvoiced, and silence. The MIT-CBG database
contains 3 male talkers and 630 total sentences (210
per talker). Of these 210 sentences per talker, 110 are
phonetically transcribed.

Thirty-five telephone conversations were evaluated
from the Credit Card corpus. Each conversation con-
tains two talkers recorded separately (four wire record-
ings). The first 20 conversations were selected for train-
ing and the remaining 15 for testing, resulting in a total
of 160.6 minutes of testing data. A KWS vocabulary
consisting of seven multi-syllable keywords/keyphrases
and their variants was selected from this Corpus. Speaker-
independent tests were conducted using four female
templates and four male templates per keyword.
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An internal (and subsequently outdated) KWS sys-
tem was used to produce objective co-channel results
for linearly added co-channel and co-channel processed
speech. This KWS system uses a feature representa-
tion based on a vector-quantized representation of 20
filterbank energies computed over a 300-3785 Hz band-
width. A dynamic time warping (DTW) algorithm was
used to compare each template to the input utterance.

The MLSA algorithm was not used in these tests.
Instead, the assignment was based on pitch estimates
computed prior to linearly adding the signals. There-
fore, this test measured the performance of the Speaker
Recovery algorithm, and relieved us from the burden
of spotting against both recovered channels.

Random utterances from the three male talkers from
the MIT-CBG database were used as the interfering
speech. Tests were conducted to determine the perfor-
mance of the KWS system at decreasing TIRs. Table 1
presents baseline results against the database with no
interference, as well as both unprocessed and processed
speech at 18, 12 and 6 dB TIRs (i.e., the interfering
talker was the weaker of the two signals). Results are
presented in terms of a figure of merit (FOM) for each
keyword.

Unprocessed - TIR Processed - TIR
keyword baseline | 18dB 12dB 6dB |18dB 12dB 6dB
account 11.56 | 14.22 1.78 0.0 7.11  11.11 0.0
american._express 18.33 | 19.33 12.67 4.83| 22.00 13.33 18.67
balance 11.64 0.0 6.0 00| 11.64  5.09 0.0
credit_card 21.32 9.50 10.94 3.71{ 16.29 16.74 3.12
discover 22.80 0.0 0.0 00] 11.60 3.20 12.80
dollar 16.00 7.10 5.81 0.90 21.94 9.81 245
visa 10.71 7.14 2,71 0.14 3.29 1.00 3.7
average FOM 18.34 8.18 4.84 1371 1341 8.61 5.82

Table 1: KWS results for seven multi-syllable keywords
in the Credit Card Corpus given in terms of figure of
merit.

4. SUMMARY

The HES co-channel speaker separation system has been
demonstrated to improve performance for a machine-
based keyword spotting system at -6 and -18 dB TIR
for linearly added co-channel speech. The current MLSA
speaker assignment algorithm (which due to space con-
straints, was not fully described) requires additional
work so that it can reliably keep a talker on a channel
without swapping. This problem has been addressed by
building a user interface for our system which displays
the original and recovered speech signals, the ML pitch
estimate, and the swap decisions, and which allows the
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user to change any swap decision and resynthesize the
signal. In the future, a decision aid based upon speaker
identification technology may also prove useful.

The HES algorithm has some inherent problems;
when both talker’s have the same instantaneous pitch,
the algorithm will place both talkers on one channel
and neither talker on the other channel. When there
are more than two talkers in the co-channel signal, only
the stronger talker can be separated, and the separation
is predicated on that talker always being stronger and
voiced. Although considerable work remains in devel-
oping co-channel algorithms, especially for the radio-
mixed environment, this paper has presented the first
complete and methodical evaluation of a co-channel
speaker separation system.
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