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ABSTRACT

Experiments in modeling speech signals for phoneme
classification are described. Enhancements to standard
speech processing methods include basis vector rep-
resentations of dynamic feature trajectories, morpho-
logical smoothing (dilation) of spectral features, and
the use of many closely spaced, short analysis win-
dows. Results are reported from experiments using the
TIMIT database of up to 71.0% correct classification
of 16 presegmented vowels in a noise-free environment,
and 54.5% correct classification in a 10 dB signal-to-
noise ratio environment.

1. INTRODUCTION

Obtaining a compact, information-rich representation
of the speech signal is an important first step in ASR.
A large majority of ASR systems use some form of cep-
stral coefficients for this purpose. Computation of these
cepstral coeflicients typically includes several of the fol-
lowing steps: (1) high-frequency preemphasis, using an
FIR filter of the form y(k) = z(k) — az(k — 1), with a
taking values around 0.95; (2) partitioning of the signal
into analysis frames of 20 to 30 ms, spaced 5 to 10 ms
apart; (3) computation of ten to forty cepstral coeffi-
cients using a cosine transform of the logarithm of the
output of a 40-channel triangular filter bank, which is
designed to approximate a Bark frequency scale; and
(4) grouping of the instantaneous cepstral values, gen-
erally augmented with delta-cepstra, into feature vec-
tors.

This paper describes several enhancements to this
procedure. We show that significant improvements in
recognition accuracy can be achieved by modifications
in all of these steps, particularly for speech corrupted
by noise. In particular, we show that

1. Rather than using ”instantaneous” cesptra aug-
mented with delta cepstra, cepstral feature vectors as-
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sociated with a speech segment (such as an entire pho-
neme) can be represented using a low-order basis vector
representation over time of each vector.

2. Morphological filtering (dilation) of the cepstral
coefficients increases accuracy and robustness in the
presence of noise.

3. Better noise immunity is obtained using a greater
number of relatively short analysis windows (8-10 ms)
and shorter frame spacing (on the order of 2 ms), at
least if coupled with the feature representation method
described in step 3.

In this paper we show the improvements due to each
of these steps individually, and then in combination,
using vowel classification experiments with the TIMIT
data base. The best result obtained, over 70% accuracy
on test vowels for clean speech, is higher than has pre-
viously been reported for the TIMIT data (using the
same configuration of training and test data), and sig-
nificantly higher than that obtained using a ”standard”
cepstral analysis.

This paper is organized as follows. Sec. 2 contains
a description of the basic signal processing methods
which are common to all of the experiments reported
here. Sec. 3 describes in detail each of the enhance-
ments. In Sec. 4 we describe our experiments and
present results which show improvements in vowel clas-
sification for each of the modifications.

2. SYSTEM DESCRIPTION

In this section we describe the basic phoneme recogni-
tion system. Note that the experiments reported here
have used the TIMIT database, hence a sampling rate
of 16 kHz should be assumed.

First, the signal is preemphasized with the filter

y[n] = z[n] — 0.95z[n — 1] + 0.494y[n — 1] - 0.64y[n — 2]

(1)
Compared to a more standard single-zero preemphasis,
this form has a very similar response at low frequencies,
but peaks around 3.2 kHz and rolls off thereafter. This
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is more consistent with human hearing and should re-
duce the deleterious effects of environmental noise with
substantial energy at high frequencies. For systems op-
erating at lower sampling rates, this modification may
be insignificant (and, of course, different coeflicients
would be indicated).

The signal is segmented into frames, and a set of
cepstral coefficients is calculated for each frame. The
samples are first multiplied by a Kaiser window, and
then the log of the squared-amplitude of the DFT (for
positive frequencies) is calculated. Finally, cepstral co-
efficients are computed in a manner which directly in-
corporates bilinear frequency warping [1]. We now de-
scribe this method.

It is desired to represent a continuous function g(w)
as a weighted sum of basis functions a;(w), in a man-
ner which incorporates a warping of the independent

variable
w'= f(w) . (2)

This can always be accomplished for continuous warp-
ing functions by “prewarping” the basis vectors, and

computing the ith coefficient as |
a= [oave) La. @
We define a new vector bi(w), given by
bitw) = as( S L (@

and compute the integral with respect to the differen-
tial element dw’. If W' = w at the limits of integration,
then the limits are unchanged by the transformation.
In discrete frequency, the numerical computation can
be performed as a straightforward dot product

ci =Y _g(n)bi(n) (5)

where g(n) and b;(n) are discretized versions of g(w)
and b;(w), respectively. The desirable result is that the
calculation involves a uniform sampling of the function
g(w). One can consider the kernel of (3) to consist of
the product of the warped basis vector a; (f(w)) and a
window function df (w)/dw.

We compute cepstral coeflicients using this method
to incorporate bilinear frequency warping [2]. Here,
g(w) is the log spectral magnitude to be represented.
For bilinear warping, we obtain the warping and win-
dow functions:

asinw

P— <
1—acosw ’ 0 <w<m(6)

Ww) = w+2tan~!
1 - a?

wiw) = 1+ a? — acos(w) '’ @

825

where ' is the bilinearly warped frequency. In addi-
tion, the basis vectors were set to zero for frequencies
below about 75 Hz and above about 6 kHz. In all ex-
periments reported here, a value a = 0.45 was used.

Note that any desired warping function can easily
be incorporated into precomputed basis vectors using
this method. This allows unlimited flexibility in terms
of degree of warping and frequency range selection, us-
ing an exact, numerically stable procedure.

The resulting coefficient vector is classified using
a neural network which has been described elsewhere
[3, 4]. Details such as frame length and spacing will be
discussed in Sec. 3, since these issues are subjects of
the current investigation.

3. DESCRIPTION OF THE
ENHANCEMENTS

3.1. Basis vector expansion

It is of interest to capture not only information about
the static spectral features, but also about their trajec-
tories. This is usually accomplished by the use of delta-
and delta-delta- parameters. However, a more robust
and comprehensive representation of these trajectories
can be obtained by expanding each feature over time
in a cosine transform. Thus, the set of values for a
given feature, over a given time interval, is represented
as a set of cosine transform coefficients. Furthermore,
these basis vectors are modified such that more empha-
sis is given to the center region of the segment and less
emphasis is given to the end regions.

In fact, the same formulation described above in-
equations (3)—(7) can be used to obtain a set of time
basis vectors. However, in this case it is desired to warp
time in such a way that detail in the center of the seg-
ment is emphasized at the expense of detail at the ends
of the segment. Specifically, we use a Kaiser window
function, specified here for time values normalized to

the interval t € [0, 1]):
Jo [,8\/1 — (2t~ 1)2]
Jo(B)

where Jy(-) is a zeroth order Bessel function of the first
kind, and # = 8 in our experiments. The warping func-
tion t'(t) is derived numerically from the above equa-
tion.

wi(t) = (8)

3.2. Morphological filtering

Spectral peaks carry far more information than spec-
tral valleys. This is especially true in the presence of
noise; in this case, the local minima in the spectrum



may be completely buried in noise. However, standard
cepstral calculations place equal emphasis on spectral
valley information and spectral peak information.

We propose a morphological filtering [5] of the time-
frequency speech signal representation. This class of
methods has been used for formant location [6], as well
as in speech coding [7], but has not to our knowledge
been applied to the ASR problem. The morphological
dilation operation can be used to eliminate spectral
valleys of a desired width. Let B be a sliding window
centered at a point w, and let z(w) be the value of
the frequency representation at that point; then the
dilation operation is defined as:

dilate(z(w), B) = max{z(w + A),A€ B} . (9)
We have used a flat, three point structuring element
such that the dilation operation consists of replacing
each sample in the time-frequency plane with the max-
imum of that sample and its two nearest neighbors in
the frequency dimension.

This has two overall effects, when followed by a
projection-based smoothing operation such as the basis
vector expansion described above. First, the weight-
ing of local spectral peaks is emphasized relative to
all other components. Second, local minima (spectral
valleys) are entirely eliminated. The result is a spec-
tral representation with an information content which
better matches the information which appears to be
relevant for human speech perception.

3.3. Analysis windows

ASR system designers have always had to settle for a
compromise in their choice of analysis window. To ob-
tain good frequency resolution, a long window is desir-
able. However, the linguistic importance of some brief
transients makes a short window desirable. The usual
compromise is to settle for frame lengths of about 20
or 30 ms, with a frame spacing of 5 to 10 ms.

A shorter window, however, is generally sufficient
to capture the salient spectral features, provided the
frame spacing is also sufficiently short. When the fea-
ture trajectories are represented as described in the pre-
ceding subsections, the frequency resolution appears to
be very similar to that obtained with the longer win-
dow. Visual inspection of time-frequency reconstruc-
tions show significantly enhanced time resolution with
little or no apparent loss in frequency resolution.

For the experiments reported here, we used a frame
length of 10 ms., and a frame spacing of 3 ms. This was
compared to a frame length of 30 ms. with frame inter-
vals of 10 ms. Noise immunity appears to be enhanced
with this type of processing.
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4. EXPERIMENTS

A classification experiment, for 16 vowels extracted
from the TIMIT data base, was conducted using fea-
tures computed as described above. Results are sum-
marized in Table 1. Four processing configurations are
compared. For each configuration, classification results
are reported for the training set and the test set. Per-
formance is evaluated for the test set with two cases:
clean speech and noisy speech (10 dB SNR). In both
cases, the classifier was trained on clean speech.

The first configuration used only static cepstral fea-
tures, augmented with delta-cepstra. In this experi-
ment there were fewer features than in the others (12
cepstral coefficients and 12 delta coefficients for a total
of 24); essentially a very narrow time slice was anal-
ysed. In this configuration, a 30 ms. analysis window
was used, with 10 mas. frame spacing.

The other three configurations used data spanning
300 ms centered at the midpoint of each vowel. The
time-warped basis vector expansion (fifth order) de-
scribed in Sec. 3.1 was applied. This gave a total of
60 features (12 cepstral coefficients, the trajectory of
each represented by five time coefficients).

In the second experiment, the setup is identical to -
the first experiment with the exception of the basis vec-
tor expansion. Unsurprisingly, since much more data
is incorporated into the analysis, results for all three
conditions (training set, clean test set, and noisy test
set) are much improved.

The third experiment used a configuration identi-
cal to the second, except that dilation of the spectrum
was performed prior to calculating the warped inverse
DCT. This had little effect on the training set or clean-
speech results; however, for noisy speech, performance
improved from 48.4% correct to 52.3% correct (an 8%
reduction in errors).

Finally, we altered the analysis frames to use 10 ms.
frames, spaced 3 ms. apart. For this case, a small but
significant improvement was seen for both clean and
noisy speech, relative to the previous experiment.

5. CONCLUSION

Several enhancements to standard speech signal mod-
eling methods have been presented. Experimental re-
sults confirm that morphological dilation of spectral
features, followed by time-warped basis vector repre-
sentation of feature trajectories, can result in improved
phoneme classification results. The improvement due
to dilation is especially significant in a noisy environ-
ment. Significant improvements are also observed when
a shorter analysis frame is used in conjunction with a



Experiment Dynamic Dilation | Frame Length/ Percent Correct
Features Frame Spacing | Training | Test (clean) | Test (noisy)
1 Delta-cepstra No 30 ms/ 10 ms | 64.3 61.3 38.5
2 Basis vectors No 30 ms/ 10 ms | 79.4 69.0 48.4
3 Basis vectors Yes 30 ms/ 10 ms | 79.2 69.2 52.3
4 Basis vectors Yes 10 ms/3ms | 79.7 71.0 54.5

Table 1: Summary of experimental results.

shorter frame spacing.

The results reported here for both clean and noisy
speech compare favorably to those reported in litera-
ture for the same task, especially compared to stan-
dard cepstral analysis. For example, Meng and Zue
[8] reported just 61.7% for clean speech and 45.0% for
noisy speech (10 dB SNR) using a mel-cepstral anal-
ysis. Their best-performing auditory model obtained
66.1% for clean speech and 54.0% for noisy speech.
Our results demonstrate that it is possible to obtain
performance in this range without the use of complex
auditory processing.

Future research will include deeper investigation of
the tradeoffs between time and frequency resolution
in spectral models of speech; further experiments with
morphological methods for improved robustness in the
presence of noise; and the inclusion of these methods
in a continuous speech recognition system.
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