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ABSTRACT

A new speech enhancement scheme based on a generalized
Wiener filter formulation is proposed. A ternary-valued pa-
rameter is derived empirically based on the likelihood of the
input signal vector being classified as speech. This param-
eter controls the Wiener filter coefficient in order to ob-
tain an improved speech spectral estimate. This “ternary-
decision” concept renders a logical compromise between the
simple, hard, “binary speech/noise decision” filtering and
the elaborate “soft-decision” filtering approaches in terms
of practicality and performance. An important feature in
our scheme is that we exploit the interframe spectral rela-
tionship to reinforce the assessment of the likelihood of weak
speech components. This feature prevents many weak for-
mants from being disproportionally attenuated as in most
previous schemes. Other important features of our scheme
include a novel speech/noise classifier and a robust noise
median amplitude tracker, both of which make the estimate
of noise spectrum more reliable. A preliminary evaluation
of this new scheme is reported here.

1. INTRODUCTION

Speech enhancement is required to ensure the quality and
reliability of voice communication systems under noisy en-
vironments. Many speech enhancement schemes have been
based.on a Wiener filtering framework with varying degrees
of success. Representatives of these schemes include the
two-state “hard-decision” filtering and “soft-decision” filter-
ing [1), iterative filtering [2], and constrained iterative filter-
ing [3]. Each of these schemes has its strengths and weak-
nesses. The two-state “hard-decision” filtering approach re-
duces the residual noise somewhat, but it tends to degrade
the naturalness of the speech. The “soft-decision” filtering
approach improves the naturalness of speech, but it tends
to dull the speech because of a lack of nonlinear character-
istics in its filter function. In addition, most schemes tend
to attenuate weak speech components disproportionally be-
cause the filter function depends only on the estimated noise
spectra. The iterative filtering approaches are seen to im-
prove perceptual quality over the above schemes, but they
have the disadvantage of increased computational cost. Be-
sides Wiener filter based schemes, there have been schemes
based on cepstral and spectral domain noise subtraction.
In particular, the INTEL method [7], which uses root cep-
stral transformation, has been shown to be effective and
robust for enhancing speech degraded by a wide range of
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noise conditions. However, this scheme has the drawback
of causing unnatural distortions to the processed speech.
For practical purposes, it is desirable to develop a scheme
to achieve a well-balanced compromise among the perfor-
mances of these schemes regarding speech quality, reduction
of residual noise, and computational efficiency. This is the
primary motivation for our ternary-decision scheme.

2. BASIC CONCEPT

The foundation of our approach is a generalized Wiener
filtering model where the predicted speech component at
the kth frequency. unit, 8x, is given by,
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where ys is the input signal assumed to be speech corrupted
with additive noise, and (s3) and (w}) are expected power
spectra of speech and noise, respectively. The parameter A
is used to control the amount of noise suppression according
to the likelihood that the kth frequency peak is speech or
noise. In the extreme case where the speech is assumed to
be present in every measurement, A = 1, and the above ex-
pression becomes identical to the classical Wiener filtering.
For practical purposes, we consider a ternary realization of
X, which is a compromise between the binary “hard” deci-
sion case and the continuous “soft” decision case [1]. We
can derive the above filter function explicitly based on a
least mean square error criterion. Using a treatment simi-
lar to the one used in [1, 2], we consider the noisy speech in
the frequency domain to be represented by two independent
random processes,

(2)

where 85 and nx are the speech and noise vectors, respec-
tively. The phase is not important in processing speech
and is assumed to be uniformly distributed. The noise is
assumed to be a Gaussian process with a Rayleigh distribu-
tion for the amplitude. We can decompose the noise ampli-
tude into its mean (ny) and another variable wg, and define
input noisy signal yx as below,

Xi = 8x +nk)

nx = wk +(ni), and yx = Xk — (nk).

Hence,
Yi = 8k + Wk, with (nx) =0.



Next, we consider the following two-state prediction model,

8 = ayx if 8, >0 (3)
8k = PBwiif sp=0. 4)
The prediction error di is then
di = 8k—8k

(o —1)sk + awy if 85 >0
Bwi if 8x =0.

The mean square error can be expressed in terms of the
following probabilities: p (probability of yx being in the
speech-plus-noise state); ¢ (conditional probability of y«
being correctly classified given that y is in the speech-
plus-noise state); and r (condmonal probability of yx being
correctly classified given that yi is in the noise-only state).
The mean square error can now be expanded as,

(d2) = pa(lle=Dsk+aw]’)+
p(1 = g){[(B — 1)k + Buwi]’) +
(1 = p)r{(Bwx)’) +
(1 = p)(t = r){(ews)?)
(@) = [pala—1)*+p(1 - q)(B~1)"Ksk) +
{lpg+ 1 =p)(1 = r)le’ +[p(1 - q) +
(1 = p)r]B* Kwh).
Minimization of {d%) with respect to @ and 8, respectively,
leads to
o b (5
(s2) + [1 + G=2=D)(w)
(st) 6
g (s2) + [1 + U5BE(w}) ©

Note that a is related to the amount of distortion whereas
8 is related to the amount of residual noise in the filtered
output. Combining Eqns (3),(4),(5), and (6) leads to Eqn

(1), where
NP CET )
rq
if yx is classified as a speech-plus-noise measurement, or
a-pr
A=14—"
p(1—4q)

if yx is classified as a noise-only measurement. In Eqn (1),
the noise and speech spectra are estimated using the FFT.
The noise spectra are updated continuously over sections
classified as “noise-only”. The speech spectra are obtained
using (s*) = (y*) — (w?).

The formulation of A cannot be used to construct a filter
directly because the probabilities involved in the derivation
are unknown. For practical implementation, we simplify
this model by assuming that each input frame is character-
ized by one of three possible states, based on its likelihood
of containing a speech component. According to the above
defined likelihood, the three states can be labelled as “most
likely,” “equally likely,” and “least likely,” and each is as-
signed a XA value. Using Eqns (5) and (6) as a starting
guideline, the three A values are determined empirically.
Adjustment of these parameters is guided by the tolerance
to distortion and residual noise.
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3. ALGORITHM FEATURES

Figure 1 shows the top level flow diagram of our algorithm.
Most of the steps in this diagram involve common signal
processing routines, except for the following features, which
are unique to our algorithm.
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Figure 1: The proposed Ternary-Decision Based Filtering
(TDBF) scheme.
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3.1. Frame—by—h’é.me Speech/Noise Classification

This feature enables us to prevent speech-containing frames
from biasing the noise estimation process. Our speech-noise
classifier uses a four-parameter decision rule, which is based
primarily on the difference of energy distribution between
speech and noise in the frequency and time domains. In
the frequency domain, the energy of a speech tends to be
localized in a smaller number of frequency bins compared
to a wideband noise. The first parameter quantifies this
property in terms of the fourth root of the fourth moment
of spectral amplitudes. In the time domain, the total en-
ergy of a speech-plus-noise frame is generally greater than
that of a noise-only frame and this is represented by the
second parameter. The third parameter, defined as the av-
erage energy of noise-only frames, is used as a normalization



reference. This parameter must be initialized once in the
beginning and is updated thereafter using a sliding window
averaging routine. The fourth parameter is an empirical
constant, which can be adjusted to match various noise con-
ditions, such as white and colored noises. The decision rule
is such that a speech frame is declared if the product of the
first two parameters is greater than the product of the third
and fourth parameters. This new classification scheme re-
sults in improved performance compared to two established
schemes, VOICEN [4] and APID [5], as indicated in Table 1.
The classification results in Table 1 are based on a total of
464 frames contained in the same five speech files used for
enhancement evaluation (Section 4). The boundaries be-
tween voice and noise only (or silence) regions are marked
manually using the clean speech files. Because the ratio
between the numbers of speech frames and noise frames is
about 2 to 1, the scores for correct classification of each
voice frame and each noise frame are weighted so that a
random classifier would score 50 on the average out of a
perfect score of 100. The new classification scheme is also
seen to result in robust performance as SNR decreases.

3.2. Median Noise Amplitude Tracking

Instead of computing the sliding average of the spectral
envelops in the noise frames, we compute the median value
of the envelop over a number of frames. This can reduce
the risk of bias caused by large amplitudes, which occur
occasionally due to misclassifications or accidental spikes in
the noise. For computational efficiency, the entire spectrum
is divided into 16 overlapping sections and the median value
in each section is determined over a number of frames. The
mean noise spectral amplitude is constructed by means of
linear interpolation among those points.

3.3. Two-Step Ternary Decision Scheme

The fraction of input amplitude that can be retained as
speech is controlled by the ternary parameter A in the filter
coefficient. Each input amplitude is classified into one of
three states based on its likelihood to be speech. In the
first step, the three states are classified using two adap-
tive thresholds, which are set to be proportional to the
mean value of the noise amplitude. The two proportion-
al constants are predetermined empirically. In the second
step, the continuity between spectral peaks in the adjacent
frames is tested. Measurements classified initially to be in
the second state can be reclassified as speech or noise if they
appear continuously in adjacent frames. In this way, many
weak speech components with equal probabilities in either
the speech-plus-noise or noise-only case can be enhanced
effectively.

4. EVALUATION

Evaluation of the proposed algorithm consists of two part-
s: (2) an objective evaluation based on two SNR measures
and the Itakura-Saito distance measure [6] and (b) a subjec-
tive evaluation consisting of five listeners. In the objective
evaluation, five speech files randomly selected from the Re-
source Management Database are degraded with additive
white Gaussian noise to simulate test data. The ratio of
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average amplitude squares between the entire original sig-
nal and the added noise sequence is termed reference SNR.
The two SNR measures comprise the segmental SNR [6)
and the global SNR as defined below,

where (z2,) and (z2,) denote the average amplitude squares
of samples taken from the voice and noise regions of the
processed speech files, respectively, and N (=5) denotes the
number of speech files; and

SP) (zna)

Global SNR=lologm( Z“ =h

10 M-1 Km4+K ]
Segmental SNR = 3= Z 1og,o Lok Kmi) ),
m=0 k=Km+1 [721‘ - 3"]

where 3 and zi are signal amplitudes taken from the voice
regions of the clean and processed speech files, respectively,
M is the total number of segments in the five speech files,
K (=160} is the segment length, and 7 is a scaling constan-
t adjusted to maximize the segmental SNR value in each
case. The voice and noise-only regions in the above SNR
formulations are obtained using manually marked bound-
aries. Based on the above definition, the global SNR can
be regarded as a performance measure with respect to the
residual noise, whereas the segmental SNR can be regarded
as a performance measure with respect to signal distortion.
The scheme used for comparative evaluation is based on
the INTEL [7] method with a square root cepstral trans-
formation, which has been a well established technology in
our laboratory. Although higher roots have been frequently
used in the cepstral compression, the square root produces
lower distortion and better perceptual quality. To obtain
a fair comparison, the new speech/noise classifier has been
used in both schemes (note that the INTEL and APID com-
bination has a poorer performance). The Global SNR mea-
sures shown in Table 2 indicate superior noise reduction,
with the exception of the clean speech case, for the pro-
posed ternary decision based filter (TDBF) compared to the
original input SNR and INTEL processing. The segmental
SNR measure related to signal distortion also shows sig-
nificant improvement for the proposed scheme over INTEL
and the original noisy utterance (Table 3). Although the
INTEL has the best global SNR in the clean speech case,
it has the worst segmental SNR among the three groups.
The gain-optimized Itakura-Saito distance measure, which
is a measure of spectral distortion and is correlated to per-
ceptual quality, also shows the lowest distances from the
noise-free original for the proposed scheme (Table 4).

In the subjective evaluation, noisy speech was recorded
digitally from two radio broadcast messages. One record-
ing was a speech segment from a radio station and the other
was wideband noise generated by tuning the receiver in be-
tween two stations. The proposed TDBF scheme was com-
pared with the noisy original and the INTEL based scheme.
Three of five evaluators preferred the proposed scheme be-
cause of its naturalness, the other two prefered the INTEL
based scheme because of their preference to a more uniform
background.



5. CONCLUSIONS

A new generalized Wiener filtering scheme which uses a
ternary-decision based parameter is proposed. The ternary-
decision based parameter which controls the filter func-
tion is experimentally determined using the guidelines of
minimum residual noise and spectral distortion. A new
speech/noise classifier is also proposed, which provides the
enhancement algorithm with boundary points and is robust
at low SNRs. The proposed Ternary-Decision Based Filter-
ing (TDBF) scheme is shown to perform well in both areas
of successful speech enhancement, that is, reducing resid-
ual background noise and producing artifact-free natural
speech. Moreover, the proposed scheme is computationally
less intensive than INTEL based and iterative speech en-
hancement approaches.

[ Classification Performance (Percent Correct) |
[ Reference | VOICEN | APID [ Proposed Classifer |

Clean 62 84 89
10 db 59 81 90
5db 60 82 88
3 db 62 81 87
0 db 55 7 84

Table 1: Comparison of classification performances of
VOICEN, APID and the proposed scheme.

{ Global SNR Measure ]
[ Reference J| Original | INTEL [ Proposed TDBF |
Clean 28.7 36.9 32.3
10 11.8 25.4 27.6
5 6.8 19.8 24.7
3 4.7 17.3 23.3
0 1.8 13.7 21.0

Table 2: Comparison of global SNR values (in dB) for
speech processed by INTEL, and the proposed scheme (T-
DBF), with respect to original noisy input.

[ Segmental SNR Measure ]
[Reference || Original | INTEL | Proposed TDBF |
Clean ) 17.2 33.2
10 6.5 9.5 10.9
5 2.4 6.8 7.6
3 1.2 5.6 6.4
0 0.4 3.7 4.7

Table 3: Comparison of segmental SNR values (in dB) for
speech processed by INTEL, and the proposed scheme (T-
DBF), with respect to original noisy input.

| Gain-Optimized Itakura-Saito Measure |
[ SNR ] Original | INTEL | Proposed TDBF |

Clean 0.00 0.34 0.26
10 1.79 1.41 1.40
5 2.05 1.72 1.69
3 2.15 1.85 1.85
0 2.28 2.02 1.99

Table 4: Comparison of the Itakura-Saito Distance Measure
for degraded speech (original), processed by INTEL and the
proposed scheme (TDBF), with respect to noise-free {clean)
speech.
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