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ABSTRACT

This paper presents an algorithm for single-sensor en-
hancment of speech corrupted by additive random noise,
based on soft-decision and statistical signal processing
concepts and incorporating fully automatic noise esti-
mation/tracking algorithms. The Soft-Decision/Vari-
able Attenuation (SDVA) algorithm uses a compressive
noise reduction model within the framework of short-
time Fourier processing. The SDVA algorithm is fast,
effective and robust, and has been applied in realistic
RF and telephone environments.

1. INTRODUCTION

The most popular algorithms for single-sensor enhance-
ment of speech degraded by additive noise are based
on processing short-term spectral information derived
from noisy speech [1, 2]. An important reason for this
popularity is computational efficiency. Spectral sub-
traction, for instance, operates on the discrete short-
time Fourier transform (DSTFT) magnitude of input
speech [1]. Since the DSTFT is computed using the
FFT, this algorithm is implementable using available
DSP hardware. While efficient, these algorithms tend
to produce speech with “musical” artifacts that are
often more objectionable than the original noise. In
addition, single-sensor speech enhancement algorithms
proposed to date require speech activity detection and
have difficulty dealing with the effects of nonstationary
noise signals.

This paper presents a novel approach to the prob-
lem of speech enhancement by DSTFT processing. This
new approach, referred to as the sofi-decision/variable
attenuation (SDVA) algorithm, combines the compu-
tational efficiency of other DSTFT-based enhancement
algorithms with a compressive, rather than subtrac-
tive, noise suppression model. While achieving pro-
cessing gains comparable to spectral subtraction, this
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model has the distinct advantage of producing residual
noise without musical artifacts. In addition, the SDVA
algorithm is formulated such that no speech activity
detection is required, and has been designed to track
noise level variations caused by automatic gain control

(AGC) [3].

2. SPECTRAL SUBTRACTION ANALYSIS

Spectral subtraction operates on the assumption that
if a noise signal e[n] is added to a desired signal z[n]
to produce a noisy signal s[n], and the added signals
correspond to uncorrelated random variables, then the
power spectral density (PSD) of s[n], P,(e?“), is given
in terms of the PSD’s of z[n] and e[n] by

Py(e) = Pa(el”) + Pe(e/*), (1)

implying that if P, (e?“) is known, then P,(e’“) can be
recovered by subtracting P,.(e?“) from P,(e’“). The
phase information associated with z[n] is assumed to
be relatively unaffected by the noise addition, and is
thus obtained from the complex spectrum of s[n].

Unfortunately, while the assumption of additive pow-
er spectra is true in a broad statistical sense, it fails to
be accurate when applied to isolated windowed seg-
ments of s[n] used to calculate the DSTFT. An ex-
ample is illustrated in Figure 1. In this figure, the
discrete Fourier transform (DFT) magnitude of one
frame of Gaussian white noise is plotted, along with the
noise PSD estimate P, [n, k] (dotted line) derived from
the mean spectral magnitude of a number of frames.
Clearly, the DFT magnitude of a single frame of noise
bears little resemblance to the nominally smooth noise
PSD. Because the spectral magnitude of a single noise
frame varies both above and below the mean, the mag-
nitude-squared spectrum after subtraction, |X[n, k]|?
will have negative values. Since there is no provision
in the spectral subtraction model for negative values,
such values are typically “rectified” by assigning them
a zero or arbitrarily small value.
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Figure 1: Illustration of spectral subtraction applied to
an isolated noise frame spectrum.

The spectral artifacts resulting from this process-
ing are shown in Figure 2 for the case of speech cor-
rupted by additive noise in a helicopter environment.
Although the result of spectral subtraction on isolated
frames is an overall reduction in noise power, this figure
demonstrates that the character of the noise residual
is that of a collection of random tone bursts that ac-
count for the “musical noise” artifact noted in spectral
subtraction (and in subtractive speech enhancement al-
gorithms in general). Although additional processing
steps may be taken to reduce the artifacts caused by
spectral subtraction [1}, such steps are only partially
effective.

3. SDVA NOISE SUPPRESSION

The observations presented so far suggest that an ef-
fective alternative to spectral subtraction should meet
two important criteria: First, it must be able to differ-
entiate between any speech components present in the
spectrum and the effects of additive noise, and be capa-
ble of suppressing noise while leaving speech informa-
tion undistorted. Second, the algorithm must process
noisy speech such that the character of any residual
noise is no more objectionable than the original noise.

These criteria can be formalized by a statistical
analysis of the short-time spectrum of noise signals. For
instance, it can be shown [4] that the DSTFT E(n, k]
of zero-mean colored Gaussian noise is itself a com-
plex Gaussian random variable for each frequency bin
k. The significance of this statistical characterization
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Figure 2: Narrowband spectrograms of noisy speech
and speech processed using spectral subtraction.

of noise spectra becomes clear after considering the cu-
mulative density function (CDF) of [E[n, k]|?, which
has the particularly simple form

C(e, k] —¢/Pun,k],

= Prob(|E[n, k]|’ <e)=1~—e (2)
A plot of this CDF is shown in Figure 3, with the vari-
able €/P,[n, k] plotted on a logarithmic scale. A quali-
tative interpretation of C(e, k] is as the probability that
noise spectral magnitudes are upper-bounded by €. By
this interpretation, Equation 3 indicates a dichotomy
between magnitude values well below the mean, which
are more likely associated with the noise process, and
magnitude values well above the mean, which are very
likely to correspond to the desired signal.

This observation suggests a simple noise suppres-
sion strategy: Given an estimate of the noise floor,
P.[n, k], evaluate C(e, k] for each value of the “noisy”
DSTFT magnitude |S{n, k]|> to determine the prob-
ability that the spectral value is associated with the
desired signal, i.e.

Puigln, k] = 1 — e ISEHIP/Panbl - (3)
If the “signal probability” Psig[n, k] is low, attenuate
the corresponding value of |S[n, k]|; otherwise, do not
attenuate. Finally, combine the processed magnitude
spectrum with the phase! of S[n, k] and resynthesize
the processed speech signal.

This “compressive” noise suppression strategy has a
distinct advantage over subtractive approaches. Since

L As in spectral subtraction, the phase is unaltered.



C(e, k]

CDF of Noise Spectral Magnitude Squared

Varisble Attenuation Bascd on Signal Probability

1 T
08 ]
0.6f
04t .
02r -
?o" 10" 1;)” 1;)' 10°
¢/Pufn,k]

Figure 3: “Semilog” plot of noise spectrum CDF.
g 8

it does not introduce negative values, the processed
spectrum does not require magnitude rectification, thus
" avoiding the musical artifact associated with subtrac-
tive enhancement algorithms. Unfortunately, the “hard
decision” boundary described above can cause spectral
discontinuities that are perceived as annoying “pops”
in the processed speech. An alternative approach is
to define a soft-decision boundary to match the soft
signal/noise probability boundary indicated by Equa-
tion 2.

One such approach is illustrated in Figure 4. Based
on empirical studies of noisy speech, it was found that
a gating attenuation based on logarithmic values of
Pyig[n, k] is sufficient to suppress most noise, pass most
speech information, and provide a smooth transition
between the two cases. Equivalently (ref. Equation 2),
this approach may be viewed as a linearly gated sub-
traction of log magnitude values. SDVA noise suppres-
sion is similar in form and motivation to approaches
due to McAulay and Malpass [5] and Ephraim and
Malah [6]. However, the SDVA algorithm has no sub-
tractive component, and the evaluation of Pyg[n, k] is
less computationally intense than suppression rules re-
quiring the evaluation of Bessel functions.

4. NOISE ESTIMATION/TRACKING

The effect of nonstationary noise represents a signifi-
cant obstacle to practical speech enhancement. A par-
ticularly troublesome problem is that of fast AGC in
pre-recorded speech. In fast AGC, the speech signal is
compressed to have a constant envelope, meaning that
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Figure 4: SDVA spectrum attenuation rule.

the noise level of the signal varies inversely with the
speech energy. Since many speech enhancement algo-
rithms rely on noise floor estimates computed during
non-speech activity and assume that the noise level re-
mains relatively stationary, AGC has an obvious nega-
tive impact on their performance.

To deal with this problem, the SDVA algorithm has
been developed with a noise tracking capability that
operates even during speech activity. The basis of this
noise tracking is the generation of a noise floor estimate
in each frame of the DSTFT. This is done by estimating
and removing the effects of speech components using an
analysis-by-synthesis sinusoidal model [7, 3]. At this
point a noise floor estimate exists for each frame that
contains information about the spectral shape of the
noise floor (which is relatively stable) and the noise
level (which is not).

Unfortunately, the instantaneous noise floor is not
completely reliable for use in the SDVA algorithm, since
it may incorporate the effects of fricative sounds that
are indistinguishable from noise in the short term spec-
trum. Therefore, the SDVA algorithm incorporates a
“gain-normalized” long-term spectral averaging func-
tion to smooth noise floor estimates given by sinusoidal
analysis, while at the same time preserving the effects
of short-term noise level variations.

Figure 5 is a block diagram of the SDVA algorithm
that illustrates the structure of the noise suppression
and tracking algorithms described. The algorithm is
structurally similar to spectral subtraction; the pri-
mary differences are the nature of noise suppression
as discussed in Section 3 and the noise floor tracking
algorithm described above. While noise floor track-
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ing represents a computational overhead in compari-
son to spectral subtraction, the amount of computa-
tion required is comparable to speech activity detec-
tion, which is not required in the SDVA algorithm.
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Figure 5: Block diagram of the SDVA algorithm.

Figure 6 demonstrates the effect of the SDVA algo-
rithm on a segment of noisy speech transmitted in a
helicopter environment over an HF channel, with fast
AGC at the receiver. As seen in this figure (cf. Fig-
ure 2), the SDVA algorithm preserves the noisy char-
acter of the original distortion while achieving attenua-
tion comparable to spectral subtraction. Furthermore,
despite the presence of significant noise level variations,
the noise tracking capability of the SDVA algorithm en-
sures that the speech is not inadvertantly suppressed
by the algorithm despite the fact that its level is com-
parable to the noise floor.

5. CONCLUSION

This paper has introduced a novel approach to the
problem of single-sensor speech enhancement known
as the Soft-Decision/Variable Attenuation (SDVA) al-
gorithm. As with classical speech enhancement algo-
rithms, the SDVA algorithm is a straightforward spec-
tral processing algorithm that is easily implemented in
real-time using inexpensive, off-the-shelf DSP proces-
sors. In addition, the SDVA algorithm also eliminates
the objectionable artifacts associated with classical ap-
proaches, and its ability to track and adapt to both
rapid noise level variations and long-term changes in
the spectral character of additive noise makes it par-
ticularly well-suited for operation in realistic commu-
nications environments.
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