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ABSTRACT

We propose three new adaptive noise suppression algo-
rithms for enhancing noise-corrupted speech: smoothed
spectral subtraction (SSS), vector quantization of line spec-
tral frequencies (VQ-LSF), and modified Wiener filtering
(MWTF). SSS is an improved version of the well-known spec-
tral subtraction algorithm, while the other two methods are
based on generalized Wiener filtering. We have compared
these three algorithms with each other and with spectral
subtraction on both simulated noise and actual car noise.
All three proposed methods perform substantially better
than spectral subtraction, primarily because of the absence
of any musical noise artifacts in the processed speech. Lis-
tening tests showed preference for MWF and SSS over VQ-
LSF. Also, MWF provides a much higher mean opinion
score (MOS) than does spectral subtraction. Finally, VQ-
LSF provides a relatively good spectral match to the clean
speech, and may, therefore, be better suited for speech
recognition.

1. INTRODUCTION AND MOTIVATION

With the advent of digital cellular telephones, the role of
noise suppression in speech processing problems such as
speech coding and speech recognition has taken on an in-
creased importance. This increased importance is due not
only to customer expectation of high performance even in
high car noise situations but also to the need to move pro-
gressively to lower data rate speech coding algorithms to
accommodate the ever-increasing number of cellular tele-
phone customers. While the higher data rate speech cod-
ing algorithms tend to maintain robust performance even in
high noise conditions, that is usually not the case with lower
data rate speech coding algorithms; the speech quality from
the latter tends to degrade drastically in high noise. While
noise suppression to prevent such speech quality losses is
important, it must be achieved without introducing any
undesirable artifacts or speech distortions or any signifi-
cant loss of speech intelligibility. These performance goals
for noise suppression have been around for many years, but
they have now come to the forefront in the digital cellular
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telephone application, which is the context in which this
research is being undertaken.

With these performance goals in mind, we have devel-
oped, implemented, and tested and compared against the
well-known spectral subtraction method in simulated and
actual car noise conditions three new adaptive noise sup-
pression algorithms. Tests conducted included objective
methods using the signal-to-noise ratic (SNR), the Itakura-
Saito distance measure, and speech recognition performance

. improvement, and subjective speech quality evaluations us-

ing informal listening tests, mean opinion score (MOS)
tests, and A-B comparison listening tests. Because of our
emphasis on the digital cellular telephone application, we
included in our tests speech output from the 8 kbits/s
VSELP coder, which is the North American Digital Cellular
Full-rate Standard (IS-54). All three proposed algorithms,
which are described below along with test results, use the
same approach for adaptive estimation of the noise power
spectrum; this estimation approach is also described below.

2. SMOOTHED SPECTRAL SUBTRACTION

If the additive noise n(t) is stationary and uncorrelated with
the clean speech signal s(t), then the power spectrum of the
noisy speech y(t) is the sum of the power spectra of s(t) and
n(t):

oe) = o(t) +n(d)
P,(w) Pi(w) + Pn(w)

Therefore, the clean speech spectrum can be estimated
by simply subtracting the noise spectrum from the noisy
speech spectrum, which is the basis of the spectral subtrac-
tion technique [1]:

B(w) = Py(w)- Pa(w)

In practice, this technique can be applied frame by frame
to the input signal using a Fast Fourier Transform (FFT)
algorithm to estimate the power spectrum. After the clean
speech spectrum is estimated by spectral subtraction, the
clean speech time signal is generated via inverse FFT from
this magnitude spectrum and the phase of the original sig-
nal.

The spectral subtraction method can substantially reduce
the noise level of the noisy input speech, but it introduces
an annoying distortion of its own. This distortion is due to
fluctuating tonal noises in the output signal, a phenomenon



commonly called musical noise. As a result, the processed
speech may sound worse than the original noisy speech and
is unacceptable to many listeners.

The musical noise problem is best understood by inter-
preting spectral subtraction as a time-varying linear fil-
ter [2]. First, we rewrite the spectral subtraction equation
as:

S(w) = H{w)Y(w)
o) = |
i(t) = F{S(w)}

where Y (w) is the Fourier transform of the noisy speech,
H(w) is the time-varying linear filter, and $(w) is the esti-
mate of the Fourier transform of the clean speech. There-
fore, spectral subtraction consists of applying a frequency-
dependent attenuation to each frequency in the noisy speech
power spectrum, where the atienuation varies with the
noisy signal to noise ratio (NSNR) at each frequency; NSNR
= ;%((uw_‘)j' Since the frequency response of the filter H(w)
varies with each frame of the noisy speech signal, it is simply
a time-varying linear filter. The left hand curve in Figure
1 shows the attenuation vs. NSNR for the spectral subtrac-
tion method. This illustrates that the amount of suppres-
sion varies rapidly with the NSNR at a given frequency,
especially when the signal and noise are nearly equal in
power. When the input signal contains only noise, musi-
cal noise is generated because the estimated NSNR at each
frequency fluctuates due to measurement error, producing
attenuation filters with random variation across frequencies
and over time.

Our proposed Smoothed Spectral Subtraction (SSS)
method involves three separate improvements over spectral
subtraction. First, a clamp is applied to the filter H(w)
so that it cannot go below a minimum value, say, -10 dB.
This prevents the noise suppression filter from fluctuating
around very small gain values, and also reduces potential
speech signal distortion. Second, the noise power spectrum
estimate is artificially increased by a small margin, say, 5
dB, so that small errors in noisy signal spectral estimates do
not lead to fluctuating attenuations [3]. These two modifi-
cations to the attenuation rule result in the curve plotted on
the right in Figure 1, which has the same amount of attenu-
ation for any small value of NSNR. Third, instead of using
the FFT-derived estimates of the noisy speech and noise
spectra directly in the attenuation rule, we use smoothed
versions of the power spectra. We use a moving average
smoothing in frequency; a smoothing window size of 32 (for
an FFT size of 256) was found to work well. This smoothing
reduces the variance of the spectral estimates, which pre-
vents musical noises from occurring. As a combined result
of these three improvements, the SSS algorithm is able to
attenuate the acoustic background noise by 10 dB without
introducing any musical noise artifacts.

LSF VECTOR QUANTIZATION BASED
NOISE SUPPRESSION

We have also developed a vector quantization (VQ) based
iterative Wiener filtering technique. This method, which
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Figure 1: Attenuation curves for spectral subtraction and
smoothed spectral subtraction.

we refer to as VQ-LSF, uses a generalized Wiener filter
H(w) [4):

i B,(w)
Py(w) + aPn(w)

H(w) ( )

where P,('w) is the clean speech power-spectrum estimate, «
is the noise suppression factor (we use o = 10), and 8 is the
power of the filter (we use 8 = 0.5). The clean speech power
spectrum is estimated as an LPC model spectrum as fol-
lows. We estimate the line spectral frequencies (LSF’s) [5]
of the clean speech based on the LSF’s of the noisy speech
data, by calculating a weighted average of codebook LSF’s
according to their perceptually weighted distances from the
noisy speech LSF’s. The VQ-LSF method iteratively im-
proves the clean speech power spectral estimate by repeat-
ing the above estimation method on Wiener-filtered noisy
speech. Typically, 5 or 6 iterations may be required. A sim-
ilar technique has previously been proposed in [7], which
uses a weighted sum of the LPC spectra based on their
forward probabilities (computed using the hidden Markov
modeling approach) for each mixture LPC spectrum. VQ-
LSF is more efficient than the approach given in [7] both
in the amount of computation and in the size of memory
required.

We use a VQ codebook of LSF’s of size 256. We calculate
the distance of the noisy frame LSF’s from each of the code-
book entries. The calculation of the distance is based on a
perceptual weighting called the inverse harmonic mean [6),
and i8 given by:

P
do=Y wi(LSF— LSFw) k

i=1

1,...,256
B 1
= LSFni — LSFne

where dy is the distance corresponding to the k** codeword,
P is the number of LSF’s, LSF, refers to the noisy frame

w;



LSF’s, LSF, refers to LSF’s from the k** codeword, w; is
the weight of the i** LSF, and LSFn. is the closest neigh-
bor of LSF,;. With this perceptually weighted distance,
LSF’s which are close to each other, and therefore have
higher chance of being formants, are allowed to dominate
the distance measure.

Based on this distance measure, we formulate a probabil-
ity function which indicates how likely each codeword entry
is to be the LSF’s of the undegraded speech for that frame:

e~ 1o
P = ~—3B6 k= 1,...,256
i=1 e—'f‘it
where v i3 a constant that controls the dynamic range for
the probabilities. Large values of ¥ mean more emphasis on
the weights of the higher probability codewords (y = 0.002
was used in our experiments). Then the clean speech LSF’s

are estimated by:

2586
LSFi =Y puLSFu, with i=1,2,.,P
k=1

Next, we convert the estimated clean speech LSF’s to LPC
coefficients ax, and calculate the LPC spectrum from:

. g2
Py(w) = 2 -
( ) Il _ Ei‘;l &k'e—JukIZ

where the gain of the LPC spectrum, 32, is calculated from
the following expression:

P
93 = Ro _ZG«Ri

1=1

where R; is i** autocorrelation lag, and a; is the i*” linear
predictor coefficient of the noisy speech. We use this esti-
mate in the Wiener filter, and filter the noisy speech frame
at each iteration. As in smoothed spectral subtraction, we
use a clamp on the filter H(w) so it does not go below a
preset minimum (-10 dB).

4. MODIFIED WIENER FILTERING

Our third method, which we call modified Wiener filtering
{MWF), is also based on the generalized Wiener filter. How-
ever, it uses a noise suppression factor that is time-varying
and is computed based on the frame-by-frame SNR. As be-
fore, the lowest Wiener filter gain is clamped to a preset
minimum threshold. The clean speech power spectral es-
timate is calculated from the LPC model spectrum of the
noisy speech Py(w) with only a gain modification:

E, — En

P.('w) = E,

Py(w)
where Ey and FE, are, respectively, energies of the noisy

speech and noise. The Wiener filter expression then reduces
to:

w) = Py(w)
H(w) \/py(w).;.ﬁﬂa-aﬂ(w)
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Next, we make the factor multiplying Pn(w) in the above
En
under the assumption that signal and noise are uncorre-
lated), and allow it to change from frame to frame. This
will ensure stronger suppression for noise-only frames and
weaker suppression during voiced-speech frames which are
not corrupted as much to begin with. The desired SNR
dependence is achieved simply by replacing o with %:a.

L. . B,~-B
expression inversely dependent on SNR (i.e., Be or 5
v

Then the expression for H(w) becomes:

_ Py(‘w)
H(w) = \/ Py(w) + -Ey—E_“EaPn(w))

Unlike other Wiener filtering approaches, the MWF
method is non-iterative and hence computationally attrac-
tive. The SNR-dependent noise suppression factor gives
MWF the ability to suppress those parts of the degraded
signal where speech is not likely to be present, and not to
suppress and hence not to distort the voiced speech as much.
As compared to spectral subtraction, the MWF method
suppresses the noise to substantially lower levels without
introducing noticeable artifacts and speech signal distor-
tions.

5. ADAPTIVE NOISE SPECTRUM
ESTIMATION

Most noise estimation methods update an average noise
power spectrum during non-speech periods, but their per-
formance depends upon accurate estimation of speech ver-
sus non-speech intervals, which is a difficult problem espe-
cially in high-noise conditions. We have developed a robust
noise estimation method that does not require speech detec-
tion. At each frequency, the noise estimate is updated for
each new input frame by moving towards the new power
spectrum estimate. To keep the adaptive estimator from
adjusting too quickly to increasing levels, the new estimate
is not allowed to exceed 1.006 times the previous estimate
or to be smaller than 0.978 times the previous estimate.
Thus, the noise estimate cannot increase faster than 3 dB
per second or decrease faster than 12 dB per second. As a
result, the noise estimates will only slightly increase during
short speech segments, and will rapidly return to the cor-
rect value during pauses between words. This approach is
simple to implement, and is robust in actual performance
since it makes no assumptions about the characteristics of
either the speech or the noise signals.

6. RESULTS FROM EXPERIMENTAL
EVALUATIONS

We generated noisy speech data by adding white noise
or actual car noise to clean speech files. In addition, we
used noisy speech data collected directly in a moving car.
We compared the three proposed noise suppression meth-
ods against each other and against traditional power spec-
tral subtraction. Tests conducted included objective meth-
ods using the signal-to-noise ratio (SNR), the Itakura-Saito
distance measure, and speech recognition performance im-
provement, and subjective speech quality evaluations using



informal listening tests, mean opinion score (MOS) tests,
and A-B comparison listening tests. All three methods pro-
duced substantial noise attenuation (10 dB or more) with-
out producing musical noises or speech distortions. Each
method was found to be significantly better than spectral
subtraction in informal listening tests.

The VQ-LSF method does not suppress the noise in very
low frequencies (e.g., 0-300 Hz), with the result that the
residual noise in the enhanced speech sounds as though
there is low-frequency emphasis. The low-frequency em-
phasis may not be desirable for listening purposes; however
as shown in Table 1, of all methods tested, VQ-LSF pro-
vides the lowest Itakura-Saito distance computed between
the clean speech and the enhanced speech and hence pro-
vides the best overall spectral match to the clean speech
spectrum. Since we expect this to result in improved speech
recognition performance, we performed a simple feasibil-
ity demonstration. We used a hidden Markov model-based
isolated word recognition system on a 20-word vocabu-
lary. The system was trained with data from 4 speakers,
and tested with 5 different speakers. The recognition rate
was 97.0% in a noise-free environment. When the original
speech was degraded with white Gaussian noise at 10 dB
SNR, the recognition rate dropped down to 71.6%. With
the VQ-LSF algorithm as a front-end to recogmtlon the
recognition rate improved to 83.6%.

As both SSS and MWF performed well in all tested condi-
tions, we conducted A-B preference (forced choice) compar-
isons between the two on 12 sentences (6 male and 6 female
speakers, one sentence each) collected in a car driven along
a highway. A panel of 15 listeners preferred MWF over SSS
73% of the time before VSELP processing and 58% of the
time after VSELP processing. The performance differences
between the two methods are, however, not that large.

Based on these comparisons, we performed further test-
ing to compare the MWF method with standard spectral
subtraction using the same 12 highway noise sentences. We
calculated the SNR values to be 14 dB for the noisy speech,
18 dB for the speech enhanced using spectral subtraction,
and 23 dB for the MWF-enhanced speech. We conducted
MOS tests using 15 listeners, also using the same 12 sen-
tences. The MOS scores are shown in Table 2. The average
MOS score is 2.7 for noisy speech, 1.9 for traditional spec-
tral subtraction, and 3.4 for MWF.
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Processing Type Distance
Noisy Speech 0.355
Standard Spectral Subtraction 0.257
Smoothed Spectral Subtraction 0.273
Modified Wiener Filter 0.267
VQ-LSF 0.201

Table 1: Itakura-Saito distance measure values between the
original clean speech and the enhanced speech files for white
Gaussian noise with 10 dB SNR.

Listener Degraded | Spec Sub | MWF
subject 1 2.333 1.833 3.667
subject 2 2.333 2.917 3.667
subject 3 1.917 2.750 2.833
subject 4 2.667 2.000 3.083
subject 5 3.083 2.000 2.583
subject 6 3.417 2.167 4.083
subject 7 3.000 1.750 3.333
subject 8 3.250 2.500 | 3.667
subject 9 3.083 1.917 3.917
subject 10 3.000 1.083 3.583
subject 11 2.500 1.333 3.417
subject 12 2.400 1.214 3.364
subject 13 2.667 1.000 3.750
subject 14 1.917 1.000 2.417
subject 15 3.000 2.333 4.083
Mean 2.704 1.853 3.430
St. Dev 0.463 0.625 0.508

Table 2: Mean Opinion Scores on a scale of 1 to 5 over
12 sentences recorded in a car on a highway (6 male, 6
female) for 3 different conditions: i) Original noisy speech,
ii) enhanced speech using standard spectral subtraction, iii)
enhanced speech using MWF method.



