REAL-TIME IMPLEMENTATION OF HMM-BASED MMSE ALGORITHM FOR
SPEECH ENHANCEMENT IN HEARING AID APPLICATIONS

H. Sheikhzadeh®, R. L. Brennan?®,

and H. Samets!

1Dept. of Elec. & Comp. Eng., University of Waterloo, Waterloo, Ont., Canada N2L 3G1,
2Unitron Industries Lid., 20 Beasley Drive, P.O.Box 9017, Kitchener, Ont., Canada N2G 4X1

ABSTRACT

In this paper we describe our recent work on real-time
implementation of a state-of-the-art HMM-based MMSE
speech enhancement algorithm, where our earlier published
algorithm [2] has been approximated, optimized, and sim-
plified. The key innovations enabling the enhancement sys-
tem to run in real-time are: 1) algorithm for automatic
selection of the noise model, 2) pruning the MMSE forward
calculations, 3) new pause detection method operative for
the SNR down to 0 dB, and 4) task partitioning of the en-
tire system, all developed from our more recent work. A
preliminary version of the real-time enhancement system is
simulated on IBM-PC 486DX2/66 and at the same time im-
plemented on a DSP platform based on dual TMS320C30
DSP chips using single precision floating point arithmetic.

1. INTRODUCTION

Under noisy conditions, hearing impaired persons typically
have greater difficulty understanding speech than those
with normal hearing. This disadvantage translates to the
requirement of an additional 2.5 and 12 dB SNR improve-
ment for speech discrimination scores similar to those of
normal hearing. As the capabilities of digital signal process-
ing migrate to smaller devices, it is natural to consider its
use as a front-end speech enhancement technique for future-
generation hearing aids. As a first step, an off-line simula-
tion of a conventional Wiener filter enhancement system
was evaluated with encouraging clinical results [1]. This
system was later adapted and run in real-time on a dual
TMS320C30 DSP system.

To solve some of the short-comings of conventional
Wiener-filtering, an off-line simulation of the minimum
mean square error (MMSE) enhancement system based on
hidden Markov modeling (HMM) of the speech signal was
developed recently by our research group. Our extensive
subjective and objective evaluations (reported in [2] and
[3]), have shown that this system is superior to the HMM-
based MAP and the conventional Wiener filtering systems.

As a result of the success of our previous work, we con-
cluded that the MMSE-based system be adapted for real-
time implementation and be further improved and refined to
suit a DSP platform. The main improvements of the system
achieved to date are two-fold: 1) Approximation and opti-
mization of the operations involved, and 2) Introducing a
robust pause detection algorithm to be used for noise model

0-7803-2431-5/95 $4.00 © 1995 IEEE

selection under various types and levels of noise. Further,
we have devised proper partitioning of the various tasks in-
volved in the enhancement process that enables the system
to take full advantage of the capabilities of the dual DSP
chips in our hardware platform.

2. EXTENSIONS TO THE MMSE METHOD

An improved HMM-based MMSE enhancement system,
based on the algorithm first described in [4], was developed.
As a basis for our system, we adopted the enhancement sys-
tem detailed in [3], which incorporates a multiple state and
mixture noise model to accommodate noise nonstationarity
more effectively.

There are various types of noise in the environment with
very different statistical spectral characteristics. It is always
an advantage for the enhancement system to have a priori
knowledge about the nature of the noise. Enhancement
methods which make assumptions about the noise type are
deficient in terms of functionality under various corrupt-
ing noise types. The HMM-based enhancement systems are
inherently relying on the type of training data for noise. Ex-
pectedly, such a system can handle only the type of noise
which has been used for training the noise HMM. Therefore,
data from various noise types should be used for training
the noise model. This creates the problem of a large model
size for the noise HMM, where the search space expands lin-
early with the number of noise types and the computation
cost grows accordingly. In addition to the growth of com-
putation, the unwanted large search space deteriorates the
system performance by introducing more sources of error in
the MMSE forward algorithm. For the real-time implemen-
tation, we developed a novel noise adaptation algorithm.
The method is devised to simultaneously 1) enable the sys-
tem to handle arbitrary types of corrupting noise, and 2)
avoid up-growth in computation complexity and preserve
the real-time implementation capability of the model.

With a real-time implementable system as an objective,
our extended MMSE enhancement system is illustrated in
the block diagram of Figure 1.

Following directly the mathematical operations involved
in MMSE speech enhancement would incur a very high com-
putation cost. To solve this problem for the purpose of
real-time implementation, we devised two major optimiza-
tion attempts, to be described in the next two sections,
by which the computer program’s execution time dropped
considerably.

808

DOUBLE PRUNING OF THE MMSE
FORWARD CALCULATION

The computation of the MMSE forward probability and
filter weights is the most time consuming part of the system.
For speech and noise HMMs of sizes M x L and N x P,
respectively, these operations call for calculation of M x
L x N x P filter weights and the same number of noisy pdf
values for each time frame ¢. In the forward algorithm, we
prune the forward trellis search through two approaches as
described below.

The first approach stems from the observation that the
majority of the noisy pdf values for a frame are negligibly
small. Thus using all the pdf values would lead to a great
amount of redundant calculations in the forward algorithm.
For the noisy pdf calculation we use the log domain to avoid
underflow. This at the same time makes the pdf calcula-
tion more efficient than directly calculating the pdf values,
since the forward probabilities are also calculated in the log
domain. As will be described in Section 4, the operations
involved in finding the log pdf values can be greatly opti-
mised. As a result, finding all the log pdf values for a frame
is not very costly. Next, the maximum value of the log
pdf for each frame was deducted from all log pdf values to
normalize their range to [0, —o00). This does not affect the
final results since the output pdfs appear both in the nu-
merator and the denominator of the equation for the filter
weight calculations [3]. In the MMSE forward algorithm,
a low threshold set empirically is used to eliminate those
nodes in the trellis having the log pdfs below the thresh-
old. It should be noted that due to the presence of various
levels and various types of noise, use of an absolute (rather
than relative) lower threshold would not be practical. In
our simulations on PC, we use a linked-list structures to
save the log pdfs and the associated indices to the speech
and noise models. However, for real-time implementation
of the enhancement algorithm, this would not be acceptable
since the computation would have to be data independent.
Instead, we use an array of such structures with a hard
limit on the maximal number of acceptable log pdf values
for each frame.

The second approach is based on the observation that
even after pruning the log pdfs, many of the forward proba-
bilities are still negligible. In the forward algorithm, we cal-
culate all the forward probabilities (after the log pdf prun-
ing) for each frame. At the same time, for each frame, we
find the total value of the forward probabilities for the fil-
ter weight calculations (see [4] and [3] for more details). We
prune out the nodes with the forward probabilities below a
pre-determined threshold relative to the total value. Again,
no absolute threshold is used. Similar to the log pdf calcu-
lations, we use an array of structures to save the forward
probabilities (and the indices). A hard limit is also put on
the maximum number of preserved nodes per frame. The
above pruning not only speeds up the forward algorithm,
but also affects the Wiener filtering process. The Wiener
filter weights are only calculated for the preserved nodes.
This implies that only a small fraction of the Wiener filters
are used to make the overall filter which is the weighted
sum of the surviving individual filters.

As a result of the double pruning described above, the

computation cost of the enhancement process becomes in-
dependent of the input data, and independent of the size
of the speech and noise HMMs as the number of the saved
filter weights are independent of the model sizes. Without
this pruning, however, the computation cost would increase
proportionally with the speech and noise model sises.

4. APPROXIMATING PDF OF NOISY

SPEECH
Calculation of the noisy Gaussian pdf (i.e. the pdf for noisy

. speech as input to the enhancement system) is computa-
" tionally costly because of the need to inverse covariance

809

matrices of sise K x K (K = 256 in our system) and of the
need of multiplication of the matrices with an equally large
sige. Since the summation of two AR processes is not nec-
essarily an AR process, decomposition of the inverse of the
covariance matrix of the noisy speech, I,,, into two Toeplitz
matrices comprised of AR coefficients of noisy speech z; is
not generally applicable. In order to avoid the expensive
calculation for the log pdfs of noisy speech due mainly to
large matrix inversion and multiplication, an approximate
method is devised.

To find the log pdfs, the autocorrelation coefficients of
the clean speech and noise are calculated from their AR
coeflicients. Assuming additivity and independence of the
noise and the clean speech signal, their autocorrelation co-
efficients are added to form the autocorrelation coeflicients
of the corresponding noisy speech. The Levinson-Durbin
recursion is performed on the calculated autocorrelation co-
efficients to find the AR parameter set of the noisy speech,
ap = {a(0),a5(1), . .-,25(p)}, 35(0) = 1 and gain o®. (The
AR order for the noisy speech is chosen to be higher than
that in either the speech or the noise model.) Given an
observation vector size K, with K > p, the log pdf can
be approximated by b(z:) = —a/(20%) —(K/2)log(2x5?),

2 r(0)Rp(0) +2Y°7_, re(m)Ry(m). re(m)

simply the autocorrelation sequence of z; and H,(m)
Yre " ap(n)ap(n+ m).

For real-time implementation, we calculate the autocor-
relation sequence Ry(m) for all the models off-line. This
leaves the real-time computation burden only on the terms
re(m) and a. As a result, the computation cost for the
pdf of noisy speech is reduced drastically from O(X*) to
O(K.p) (p being the AR order).

where o is

PAUSE DETECTION ALGORITHM

As discussed in Section 2, the noise model selection algo-
rithm relies on accurate pause detection. Although we are
looking only for pauses on the order of a few hundred mil-
liseconds long, detecting non-speech activity is not straight-
forward due to the effects of noise. To be able to cope with
different classes of noise, we adopted a hybrid approach to
the problem. Central to our approach to the pause detection
problem is an autocorrelation voicing detector algorithm
proposed in [5]. Voicing detection was performed on the en-
hanced signal rather than on the noisy signal. This has the
advantage of less noisy estimates of the voiced (V) segments
but has the drawback of estimating more unvoiced (UV)
segments than it should. We updated the average measure

5.

of the energies of the voiced and unvoiced segments (as by-
products of the autocorrelation analysis), respectively, for
both noisy and enhanced signals. The ratio of the average
unvoiced to voiced energies for the noisy signal (UE/VE)
and that for the enhanced signal (UEE/VEE) were used to
correct the errors in the voicing decision process. Specifi-
cally, for a sequence of unvoiced frames to be accepted as
a pause, UE/VE and UEE/VEE had to be lower than an
empirically determined threshold. In order to avoid arti-
facts, we rigorously tested our pause detection algorithm on
four different (clean and noisy) sentences from the TIMIT
database. Noisy sentences were generated by artificially
adding simulated white noise, simulated helicopter noise
and recorded multi-talker (babble) noise at SNR’s ranging
from 0 to 10 dB. The algorithm has been tested and fine
tuned extensively until it produces consistent pause detec-
tion results for all different noises over all noise levels and
for all different sentences.

HARDWARE DESCRIPTION AND TASK
PARTITIONING

The target DSP platform is based on a dual TMS320C30
system. Each processor has two address spaces accessible
through the primary and expansion buses allowing flexible
off-chip data transfers. The processors access the majority
of their memory through their primary (main) bus. These
buses are linked by multiplexers and arbitration logic to
allow each processor to access the memory of the other.
In addition, the primary buses are also linked to a global
memory area containing control registers, the boot pro-
gram (in EEPROM), and another block of global RAM. Pri-
vate memory, available on the secondary (expansion) bus,
is efficiently used to store slowly changing coeflicient in-
formation, freeing up the primary bus for high speed data
transfers. Communication between the processors is accom-
plished through interconnected high-speed serial ports and
the shared memory areas. Each processor is equipped with
256k words (4-byte wide) of external 0-wait state memory
and 2k words of internal memory.

The TMS320C30 implements single precision (4-byte)
floating point arithmetic. While a significant advantage
over fixed point processors, the HMM algorithm (originally
double precision) had to be adapted to work efficiently in
this environment. Whenever possible, arithmetic was per-
formed in the ‘log’ domain. Overflow and underflow had to
be strictly prevented. Certain functions such as “log” and
“exp” were approximated by Chebyshev polynomial series
to avoid the overhead of the math libraries. Trigonometric
functions were placed in a lookup table since only a finite
number of values were necessary. Memory usage was sig-
nificantly trimmed with an emphasis placed on the use of
dynamic allocation to reduce the static allocation on the
limited available stack. Generally, a deterministic design
was pursued based on the worst case scenario since process-
ing must always proceed.

The HMM algorithm code was developed in C which
was advantageous to our DSP (spectral subtraction) sys-
tem since the single bus (multi-access) architecture of the
’C30 lends itself well to the compiled C code. An ANSI
compliant and reasonably efficient ¢ compiler is available

810

for this purpose. A design philosophy was adopted where
C code would be developed with provision for time-critical
(FFT routines for example) hand-assembled code. As a re-
sult, the C code formed the backbone of the project with
sections of assembly code specially written to conform to
the C-calling conventions.

Knowing that our C code for the HMM algorithm is
portable, we proceeded to optimisze its execution speed on
a PC 486DX2/66 using the WATCOM C386 compiler v9.5.
Of course, a few constraints had to be placed on the code
for the DSP environment. One of the first issues on our
carlier DSP system was where to place the stack (internal
memory or external). During function calls, arguments are
placed on the stack and it is advantageous for it to be in
internal memory for fast access. Up to three bus accesses
may be made per cycle of which only one may be from exter-
nal memory. If the stack is internal, program instructions
may be fetched from external memory with no conflict. Ac-
cordingly, a software stack was formed from 512 words of
internal memory. Since static allocation (performed on the
stack) would quickly exhaust its limited sise, an extreme
emphasis was placed on dynamic allocation (malloc).

At present, we are able to simulate a near real-time ver-
sion of our system on a PC 486DX2/66. The simulations
have resulted in an execution speed of about one-half real-
time and a memory usage of less than 400 Kbytes. The
results clearly indicated that the real-time implementation
is feasible once proper task partitioning is applied to the
enhancement algorithm.

The dual processor DSP platform proves to be well suited
to the algorithm implementation. Processor 1 handles the
forward FFT and all interrupt driven signal I/O, and pre-
processes the signal into the autocorrelation domain of order
16. The autocorrelation coefficients and frequency domain
information are then passed to processor 2 in the shared
memory space. Processor 2 calculates the noisy pdf, and the
likelihood of each Wiener filter prototype (corresponding to
the speech and noise models in the pre-trained HMMs) ex-
pressed as a series of weights. The frequency domain Wiener
filter is then calculated as a weighted sum of these proto-
type Wiener filters. After multiplication by this filter, the
enhanced signal spectrum is transformed back the the time
domain by an inverse FFT on Processor 2. This signal is
passed back to Processor 1 in the shared memory space.
During speech pauses, Processor 2 adapts the prototype
Wiener filter according the the new noise characteristics.

7. SUMMARY

In this paper we describe our recent progress of research and
development towards real-time implementation of a state-
of-the-art HMM-based MMSE speech enhancement system,
where the original algorithm has been approximated, opti-
mized and simplified. The key innovations in making the
system real-time include the use of a noise-model selection
algorithm, pruning of the MMSE forward calculations, a
pause detection method operating over the SNR down to 0
dB for white, helicopter and multi-talker noises, and proper
task partitioning of the entire enhancement system. A pre-
liminary version of the real-time system is simulated on
IBM-PC 486DX2/66 first and then implemented on a DSP

platform based on dual TMS320C30 DSP chips. The exper-
imental results demonstrate that the real-time system sim-
ulated on IBM-PC is able to produce speech enhancement
performance (in terms of the SNR measure) essentially the
same as that implemented on the DSP platform, both are
approaching the performance of the system we developed
earlier on Unix-based platform [2].

NOISY
seesct | | prepROCESS FREGUENCT-DOMAIN R | AED
- (WINDOWING FFT WIENERFILTERING L[py oviRLAP- | SPECH
AmmmmT USING WEIGHTED ADD METHOD
WE $SUM OF FILTERS
rorwaRD |}
ALGORITHM
]
AND OUTPUT
HH)FSWM CALCULATEALL

NOISE & SPEECH WIENER ALTERS
ARHMM'S T
===

SELECT
NOISE MODEL

FORWARD

v
]
'
T
‘
'
v
¢
.
]
INVENTORY /¢
OFNOBE 1}
]

q

s

)

’

'

'

'

]

]

'

'

v

.

g

PAUSE
[USING NOIS!

MODELS

NOISE MODEL ADAPTATION

Figure 1. Extended MMSE enhancement system block dia-
gram

REFERENCES

[1] D. G. Jamieson and R. L. Brennan, “Evaluation
of Speech Enhancement Strategies for Normal and
Hearing-Impaired Listeners”, in Proceedings of the
ESCA Workshop on Speech Processing in Adverse Con-
ditions, (Cannes-Mandelieu, France), pp. 155-158,163,
Nov. 1992.

[2) H.Sheikhzadeh, H. Sameti, L. Deng, and R. L. Brennan,
“Comparative Performance of Spectral Subtraction and
HMM-Based Speech Enhancement Strategies with Ap-
plication to Hearing Aid Design”, in Proceedings of the
ICASSP, vol. 1, pp. 13-16, Apr. 1994.

[3] H.Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan,
“HMM-Based Strategies for Enhancement of Speech
Embeded in Non-Stationary Noise”, IEEE Transactions
on Speech and Audio Processing, Submitted 1994.

[4] Y.Ephraim, “A Minimum Mean Square Error Approach
for Speech Enhancement”, Proceedings of the ICASSP,
pp. 829-832, 1990.

[5] D. A. Krubsack and R. J. Niederjohn, “An Auto-
correlation Pitch Detector and Voicing Decision with
Confidence Mecasures Developed for Noise-Corrupted
Speech”, IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 39, pp. 319-328, Feb. 1991.

811

